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Abstract—Tomographic imaging modalities are 

described by large system matrices. To improve the 
temporal resolution of functional imaging in tomography, 
sparse spatial sampling is often employed, which degrades 
the system matrix and introduces artifacts in reconstructed 
images. Various existing techniques improve the image 
quality without correcting the system matrix and have 
limitations. Here, we compress the system matrix to 
improve computational efficiency (e.g., 42 times) using 
singular value decomposition and fast Fourier transform. 
Enabled by the efficiency, we propose fast sparsely 
sampling functional imaging by incorporating a densely 
sampled prior image into the system matrix, which 
maintains the critical linearity while mitigating artifacts. We 
demonstrate the methods in 3D photoacoustic computed 
tomography with significantly improved image quality and 
clarify their applicability to X-ray CT and radial-sampling 
MRI due to the similarities in system matrices. 

Index Terms—Tomographic imaging, photoacoustic 
computed tomography, system matrix compression, 
system matrix manipulation, sparsely sampling functional 
imaging 

I. INTRODUCTION 
omographic imaging modalities X-ray computed 
tomography (CT), magnetic resonance imaging (MRI), and 

photoacoustic computed tomography (PACT) produce cross-
sectional images of tissue by detection of penetrating X-rays 
[1], nuclear-magnetic-resonance-induced radio waves [2], [3], 
and light-absorption-induced ultrasonic waves [4], 
respectively. Each modality with a certain setup is described by 
a system matrix [5]–[10]. 

Accurate image reconstruction poses requirements to the 
system matrix, which are often violated. For example, to 
achieve high temporal resolution for functional imaging, the 
spatial sampling density is often sacrificed, which introduces 
artifacts in the reconstructed image [11]–[13] and compromises 
the functional signal extraction. 

 
Manuscript received XX XX, 2025; accepted XX XX, 2025. This work was supported by National Institutes of Health grants U01 EB029823 

(BRAIN Initiative), R35 CA220436 (Outstanding Investigator Award), and R01 CA282505. Lihong V. Wang has financial interests in 
Microphotoacoustics, Inc., CalPACT, LLC, and Union Photoacoustic Technologies, Ltd., which, however, did not support this work. (Corresponding 
author: Lihong V. Wang.) 

This research involved animals. The animal experiments followed the protocol approved by the Institutional Animal Care and Use Committee of 
the California Institute of Technology. 

Peng Hu, Xin Tong, and Lihong V. Wang are with the Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical 
Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125 USA (e-mail: hupen0520@outlook.com; 
xtong2@caltech.edu; LVW@caltech.edu). 

Li Lin was with the Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical 
Engineering, California Institute of Technology, Pasadena, CA 91125 USA. He is currently with the College of Biomedical Engineering and Instrument 
Science, Zhejiang University, Hangzhou 310027, China (e-mail: linliokok@zju.edu.cn). 

Numerous methods have been proposed to compensate for 
system-matrix imperfections from image-domain [12], [14]–
[21], signal-domain [22]–[28], and cross-domain [29]–[33] 
perspectives. However, due to the large size of each system 
matrix, these methods tend not to manipulate or correct the 
system matrix directly and have limitations. For sparse 
sampling functional imaging, traditional methods [12], [16], 
[17], [19]–[21], [26], [33] mitigate artifacts in images but their 
performances drop sharply as the sampling density reduces. 
Deep neural networks (DNNs) [18], [22], [23], [25], [29], [32], 
[34] show high performance in mitigating artifacts but tend to 
generate false image features when the sampling density is low, 
and they require imaging-modality- and device-dependent 
datasets, which are not always available. Moreover, most of the 
methods introduce nonlinearity while mitigating artifacts, 
which disrupts the functional signals that are often much 
weaker than background signals. 

Here, we compress the system matrices using singular value 
decomposition (SVD) and fast Fourier transform (FFT), which 
enables efficient system matrix slicing and manipulation. For 
sparse sampling functional imaging, we manipulate the system 
matrix with a densely sampled prior image, which effectively 
reduces unknown variables in image reconstruction with sparse 
sampling. Special configurations in the method maintain 
linearity in image reconstruction while substantially mitigating 
artifacts, which is critical for weak functional signal extraction. 
The proposed system matrix compression and manipulation 
methods are applicable to CT, MRI, and PACT. Note that the 
system matrix compression’s effect on CT is minor due to the 
matrix’s explicit high sparsity [1]. Nevertheless, the system 
matrix manipulation facilitates functional imaging in all three 
modalities. 

In this work, we use 3D PACT for demonstration due to its 
representatively large size in tomography: light-absorption-
induced ultrasonic wave from every voxel in an image is 
detected by every transducer element and the system matrix is 
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intrinsically a 6D tensor [10]. We apply the data-driven system 
matrix manipulation to both numerical simulations and in vivo 
mouse brain functional imaging with sparse sampling, and 
demonstrate that the method substantially improves the 
functional image accuracy. 

Specifically, in Section II, we describe the forward operator 
in PACT and its compression in continuous form. In Section III, 
we simplify the forward operator expression for a flat 
rectangular transducer detection surface using the far-field 
approximation. Then, we discretize the forward operators 
into the system matrices in Section IV. Further, we introduce 
a hybrid method for image reconstruction based on system 
matrix manipulation (Section V) and a correlation-based 
method for functional signal extraction (Section VI), which 
enable our system for fast functional imaging. Next, we use 
numerical simulations to demonstrate the efficiency and 
accuracy of the compressed system matrix (Section VII), the 
high performance of the hybrid method in image reconstruction 
(Section VIII), and the effectiveness of the fast functional 
imaging method (Section IX). Finally, in Section X, we 
demonstrate the method’s capability for fast mouse brain 
functional imaging in vivo. 

II. FORWARD OPERATOR COMPRESSION IN PACT BASED 
ON SVD AND FFT 

In an acoustically homogeneous medium, a photoacoustic 
wave can be expressed as [10], [35]  

𝑝(𝐫, 𝑡) =
1

4𝜋𝑐!,
𝑝"(𝐫#)
‖𝐫# − 𝐫‖

𝜕
𝜕𝑡 𝛿 1𝑡 −

‖𝐫# − 𝐫‖
𝑐 2d𝐫#

$
. (1) 

Here, 𝑝(𝐫, 𝑡) is the pressure at location 𝐫 and time 𝑡, 𝑐 is the 
speed of sound (SOS), 𝑉 is the volumetric space occupied by 
the tissue, 𝑝"(𝐫#) is the light-absorption-induced initial pressure 
at 𝐫#, and 𝛿(𝑡) is the Dirac delta function. In this study, image 
reconstruction for PACT is to obtain 𝑝"(𝐫#) from ultrasonic 
detections of 𝑝(𝐫, 𝑡). 

Assume that we have 𝑁 finite-size ultrasonic transducer 
elements. For the 𝑛-th transducer element at 𝐫% with detection 
surface 𝑆%, the average pressure on the detection surface at time 
𝑡 is expressed as  

𝑝9(𝐫%, 𝑡) =
1
𝐴%
, 𝑝(𝐫, 𝑡)d𝑎%(𝐫)
&!

. (2) 

Here, 𝐴% denotes the area of the surface 𝑆%, and the Leibniz 
notation d𝑎%(𝐫) represents the area of an infinitesimal subset of 
𝑆%	around 𝐫. We express the spatial impulse response (SIR) in 
Eq. (2) as [10]  

ℎ',%(𝐫#, 𝑡) = ,
𝛿 ?𝑡 − ‖𝐫

# − 𝐫‖
𝑐 @

2𝜋𝑐‖𝐫# − 𝐫‖ d𝑎%(𝐫)
&!

. (3) 

Then Eq. (2) becomes  

𝑝"(𝐫!, 𝑡) =
1
2𝑐, 𝑝"(𝐫#)

1
𝐴!

𝜕
𝜕𝑡 /,

𝛿 1𝑡 − ‖𝐫
# − 𝐫‖
𝑐 4

2𝜋𝑐‖𝐫# − 𝐫‖ d𝑎!(𝐫)
$!

8 d𝐫#
%

=
1
2𝑐, 𝑝"(𝐫#)

1
𝐴!

𝜕
𝜕𝑡 ℎ&,!

(𝐫#, 𝑡)d𝐫#
%

. (4)

 

We denote the electric impulse response (EIR) of the 𝑛-th 
transducer as ℎ),%(𝑡) and express the transducer’s response 
using temporal convolution ∗* as  

𝑝̂(𝐫%, 𝑡) = 𝑝9(𝐫%, 𝑡) ∗* ℎ),%(𝑡). (5) 
Substituting Eq. (4) into Eq. (5) yields  

𝑝̂(𝐫%, 𝑡) =
1
2𝑐, 𝑝"(𝐫#)

1
𝐴%

𝜕
𝜕𝑡 ℎ',%

(𝐫#, 𝑡)d𝐫#
$

∗* ℎ),%(𝑡)

= , 𝑝"(𝐫#)
ℎ),%# (𝑡) ∗* ℎ',%(𝐫#, 𝑡)

2𝑐𝐴%
d𝐫#

$

= ,𝑝"(𝐫#)ℎ%(𝐫#, 𝑡)d𝐫#
$

.

(6) 

Here, the prime in ℎ),%# (𝑡) denotes the time derivative, and ℎ% 
denotes the point source response per unit initial pressure per 
unit infinitesimal tissue volume received by a finite-size 
transducer element:  

ℎ%(𝐫#, 𝑡) =
ℎ),%# (𝑡) ∗* ℎ',%(𝐫#, 𝑡)

2𝑐𝐴%
. (7) 

Eq. (6) describes the forward operator in PACT that maps 
𝑝"(𝐫#) to 𝑝̂(𝐫%, 𝑡), and the image reconstruction is to obtain 
𝑝"(𝐫#) from measurements of 𝑝̂(𝐫%, 𝑡). 

For convenience in the following discussion, we temporally 
shift ℎ',%(𝐫#, 𝑡) and ℎ%(𝐫#, 𝑡) for 𝐫# such that time 0 aligns with 
the onset of the nonzero signal received by the center of the 𝑛-
th transducer element 𝐫%:  

ℎG',%(𝐫#, 𝑡) = ℎ',% 1𝐫#, 𝑡 +
‖𝐫# − 𝐫%‖

𝑐 2

= ,
𝛿 ?𝑡 + ‖𝐫

# − 𝐫%‖
𝑐 − ‖𝐫

# − 𝐫‖
𝑐 @

2𝜋𝑐‖𝐫# − 𝐫‖ d𝑎%(𝐫)
&!

(8)

 

and  

ℎG%(𝐫#, 𝑡) = ℎ% 1𝐫#, 𝑡 +
‖𝐫# − 𝐫%‖

𝑐 2

=
ℎ),%# (𝑡) ∗* ℎ',% ?𝐫#, 𝑡 +

‖𝐫# − 𝐫%‖
𝑐 @

2𝑐𝐴%

=
ℎ),%# (𝑡) ∗* ℎG',%(𝐫#, 𝑡)

2𝑐𝐴%
. (9)

 

Next, we express the SIR and point source response in the 
local coordinates of the transducer elements. In this study, we 
assume that the elements have the same EIR: ℎ),%(𝑡) =
ℎ)(𝑡), 𝑛 = 1,2, … ,𝑁; and the measurement of ℎ)(𝑡) is 
discussed in the next section. We define the local coordinates 
of the 𝑛-th transducer element using its center location on the 
detection surface as the origin, the length direction as the 𝑥-
axis, the width direction as the 𝑦-axis, and the normal direction 
(toward the detection region) as the 𝑧-axis. Here, we choose the 
𝑥-axis and 𝑦-axis to let the coordinates satisfy the right-hand 
rule. We express the three axes of the local coordinates as three 
vectors of unit length: 𝐱P%, 𝐲P%, and 𝐳P% (shown in Fig. 1a), which 
form an orthonormal matrix  

𝐀% = (𝐱P%+, 𝐲P%+, 𝐳P%+). (10) 
Locations 𝐫#, 𝐫%, and 𝐫 in the global coordinates correspond to 
the locations 𝐫,-,# , 𝟎, and 𝐫,-, in the local coordinates of the 𝑛-th 
transducer element. Coordinate transformations yield 𝐫,-,# =
(𝐫# − 𝐫%)𝐀% and 𝐫,-, = (𝐫 − 𝐫%)𝐀%. These global and local 
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coordinates satisfy ‖𝐫# − 𝐫%‖ = ‖𝐫,-,# ‖ and ‖𝐫# − 𝐫‖ = ‖𝐫,-,# −
𝐫,-,‖ due to the orthonormality of the transformations. We 
denote the detection surface (𝑆% in the global coordinates) in the 
local coordinates as 𝑆%,,-,, and denote the local Leibniz notation 
as d𝑎%,,-,(𝐫,-,) = d𝑎%(𝐫). Thus, in the local coordinates of the 
𝑛-th transducer element, we express Eq. (8) as  

ℎG',%(𝐫#, 𝑡) = ,
𝛿 ?𝑡 + ‖𝐫,-,

# ‖
𝑐 − ‖𝐫,-,

# − 𝐫,-,‖
𝑐 @

2𝜋𝑐V𝐫,-,# − 𝐫,-,V
d𝑎%,,-,(𝐫,-,)

&!,#$#
,

𝐫,-,# = (𝐫# − 𝐫%)𝐀𝐫! , 𝑛 = 1,2, … ,𝑁. (11)

 

All transducer elements are geometrically identical and have 
the same local coordinates, meaning 𝑆%,,-, = 𝑆%%,,-, and 
d𝑎%,,-,	(𝐫,-,) = d𝑎%%,,-,(𝐫,-,) for 𝑛, 𝑛# ∈ {1,2, … ,𝑁}. We define 
𝑆,-, = 𝑆/,,-,, d𝑎,-,	(𝐫,-,) = d𝑎/,,-,(𝐫,-,), and rewrite Eq. (11) as  

ℎ<&,()((𝐫()(# , 𝑡) = ,
𝛿 1𝑡 + ‖𝐫()(

# ‖
𝑐 − ‖𝐫()(

# − 𝐫()(‖
𝑐 4

2𝜋𝑐>𝐫()(# − 𝐫()(>
d𝑎()((𝐫()()

$"#"
, (12) 

which is now independent of the transducer element index 𝑛. 
Replacing ℎ),%# (𝑡) and ℎG',%(𝐫#, 𝑡) with ℎ)# (𝑡) and ℎG',,-,(𝐫,-,# , 𝑡), 
respectively, in Eq. (9), we define  

ℎG,-,(𝐫,-,# , 𝑡) =
ℎ)# (𝑡) ∗* ℎG',,-,(𝐫,-,# , 𝑡)

2𝑐𝐴%
. (13) 

Thus, we need to calculate only the values of ℎG',,-,(𝐫,-,# , 𝑡) and 
ℎG,-,(𝐫,-,# , 𝑡), then obtain the values of ℎG',%(𝐫#, 𝑡) and ℎG%(𝐫#, 𝑡) 
through coordinate transformation:  

ℎG',%(𝐫#, 𝑡) = ℎG',,-,(𝐫,-,# , 𝑡) (14) 
and  

ℎG%(𝐫#, 𝑡) =
ℎ),%# (𝑡) ∗* ℎG',%(𝐫#, 𝑡)

2𝑐𝐴%

=
ℎ)# (𝑡) ∗* ℎG',,-,(𝐫,-,# , 𝑡)

2𝑐𝐴%
= ℎG,-,(𝐫,-,# , 𝑡), (15)

 

respectively, with 𝐫,-,# = (𝐫# − 𝐫%)𝐀% for 𝑛 = 1,2,… ,𝑁. 
Through these relations, we express both the SIR and the point 
source response in the local coordinates. 

 
Fig. 1 Compression of the forward operator based on SVD. a A point source (a 
red dot), the 𝑛-th transducer element (a black rectangular centered at 𝐫!), and 
the element’s local coordinate system with axes 𝐱$!, 𝐲$!, and 𝐳$!. b Four point 
sources A, B, C, and D (red dots) in the local coordinate system of the 𝑛-th 
transducer element. Points A, D, and 𝐫! are on the same line. c The responses 
of the transducer element to the signals from the four point sources and the PCC 
between every two responses. d Expression of the four responses using linear 
combinations (coefficients visualized with bars) of three temporal singular 
functions shown as red, gray, and blue curves, respectively, based on SVD. e-f 
Independent responses (e) of a transducer element to 50 point sources (index 
𝑚" = 1,2, … ,50) with decreasing distances to the element, and the temporally-
shifted form (f), which aligns the nonzero signals in time. g White-noise 

responses of the same size as those in e and f. h-i Normalized singular values 
and proportions of the variances unexplained, respectively, in the SVDs of the 
signals in e, f, and g. 

We visualize the signals detected by a transducer element by 
picking four point sources, labeled as A, B, C, and D, 
respectively, in the local coordinate system of the 𝑛-th 
transducer element (Fig. 1b), with points A, D, and the element 
center 𝐫% on the same line. The element’s responses to the 
signals from the point sources are shown in Fig. 1c. We let 𝜌0,1 
denote the Pearson correlation coefficient (PCC) between the 
responses corresponding to A and B. A direct implementation 
of the forward operator based on Eq. (6) is computationally 
intensive. Although 𝜌0,2 = 1, due to the effects of SIR, 𝜌0,1, 
𝜌0,3, and 𝜌1,3 are less than 1, indicating the signals from points 
A, B, and C are not shift-invariant; thus, an efficient temporal 
convolution with one kernel function cannot yield the detected 
signals accurately. 

To accelerate the forward operator, we decouple the spatial 
and temporal dimensions of ℎG,-,(𝐫,-,# , 𝑡) using SVD while 
keeping only the dominant components:  

ℎG,-,(𝐫,-,# , 𝑡) ≈ ]ℎG,-,,4(𝐫,-,# )𝜂4(𝑡)
5

46/

. (16) 

Here, ℎG,-,,4(𝐫,-,# ) and 𝜂4 denote the 𝑘-th spatial singular function 
and the 𝑘-th temporal singular function, respectively; and we 
use the first 𝐾 terms to approximate the whole series. 
Combining Eqs. (9), (15), and (16), we obtain  

ℎ%(𝐫#, 𝑡) = ℎG% 1𝐫#, 𝑡 −
‖𝐫# − 𝐫%‖

𝑐 2 

= ℎG,-, a(𝐫# − 𝐫%)𝐀%, 𝑡 −
‖𝐫# − 𝐫%‖

𝑐 b 

≈]ℎG,-,,4c(𝐫# − 𝐫%)𝐀%d𝜂4 1𝑡 −
‖𝐫# − 𝐫%‖

𝑐 2
5

46/

. (17) 

Substituting Eq. (17) into Eq. (6), we obtain  

𝑝̂(𝐫!, 𝑡) ≈ , 𝑝"(𝐫#)Aℎ<()(,*B(𝐫# − 𝐫!)𝐀!D𝜂* F𝑡 −
‖𝐫# − 𝐫!‖

𝑐 G
+

*,-

d𝐫#
%

 

=A𝜂*(𝑡) ∗. , 𝑝"(𝐫#)ℎ<()(,*B(𝐫# − 𝐫!)𝐀!D𝛿 F𝑡 −
‖𝐫# − 𝐫!‖

𝑐 Gd𝐫#
%

,
+

*,-
𝑛 = 1,2,… ,𝑁, 𝑡 ≥ 0. (18)

 

As shown in this equation, we split the temporal variable from 
the spatial integrals, which allows for a fast implementation of 
the forward operator. 

We apply Eq. (16) with 𝐾 = 3 to the responses in Fig. 1c for 
an initial demonstration. The three temporal singular functions 
𝜂/(𝑡), 𝜂!(𝑡), 𝜂7(𝑡) are shown as red, gray, and blue curves, 
respectively, in Fig. 1d, and the values of spatial singular 
functions are visualized as bars. Then we explain the necessity 
of temporal shifting for alignment, described in Eqs. (8) and 
(9), for SVD. We select 50 point sources with decreasing 
distances to a transducer element and visualize the element’s 
independent responses to them in Fig. 1e. The temporally-
shifted form of these responses based on Eq. (9) is shown in 
Fig. 1f. We also add white-noise responses with the same size 
for comparison, as shown in Fig. 1g. Performing SVD to the 
three sets of responses, we observe different compression 
efficiencies from the perspectives of normalized singular value 
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(Fig. 1h) and proportion of the variance (Fig. 1i). In both 
figures, we see that the compression efficiency of the original 
responses is similar to that of the white-noise responses, 
whereas the efficiency for the temporally-shifted responses is 
significantly higher (necessary for the compression). 

III. POINT SOURCE RESPONSE OF AN ULTRASONIC 
TRANSDUCER WITH A FLAT RECTANGULAR DETECTION 

SURFACE 
The fast forward operator can be configured for a transducer 

with any detection surface. Here, we only discuss an ultrasonic 
transducer with a flat rectangular detection surface with a length 
𝑎 of 0.7	mm and a width 𝑏 of 0.6	mm, which is used in our 3D 
imaging system [36]. We see from Eqs. (6) and (15) that the 
forward operator is based on the point source response 
ℎG,-,(𝐫,-,# , 𝑡) in the local coordinates. The response is determined 
by the first derivative of EIR (ℎ)# (𝑡)) and the realigned SIR 
(ℎG',,-,(𝐫,-,# , 𝑡)) in the local coordinates. In general, we can 
measure ℎG,-,(𝐫,-,# , 𝑡) experimentally. In this research, for an 
ultrasonic transducer with a flat rectangular detection surface, 
we calculate ℎG,-,(𝐫,-,# , 𝑡) efficiently using the far-field 
approximation of ℎG',,-,(𝐫,-,# , 𝑡)	[10]. From a special case of this 
approximation, we derive a method to measure ℎ)# (𝑡) 
experimentally. 

In the first step of obtaining ℎG,-,(𝐫,-,# , 𝑡), we introduce the 
calculation of ℎG,-,(𝐫,-,# , 𝑡) based on the far-field approximation 
of ℎG',,-,(𝐫,-,# , 𝑡). In this research, the image domain is within the 
far-field regions of all transducer elements. Using the far-field 
approximation, we express the SIR in the frequency domain as 
[10]  

𝐹* hℎ',%(𝐫#, 𝑡)i (𝑓) ≈
𝑎𝑏 exp ?−𝑗2𝜋𝑓 ‖𝐫

# − 𝐫%‖
𝑐 @

2𝜋𝑐‖𝐫# − 𝐫%‖
 

sinc 1𝜋𝑓
𝑎|(𝐫# − 𝐫%)𝐱P%+|
𝑐‖𝐫# − 𝐫%‖

2 sinc 1𝜋𝑓
𝑏|(𝐫# − 𝐫%)𝐲P%+|
𝑐‖𝐫# − 𝐫%‖

2 . (19) 

Here, 𝐹* denotes the temporal Fourier transform (FT), and 𝑗 
denotes the imaginary unit. Combining Eqs. (14) and (19), we 
apply the temporal FT to ℎG',,-,(𝐫,-,# , 𝑡) and obtain  

𝐹. Pℎ<&,()((𝐫()(# , 𝑡)Q (𝑓) = 𝐹. Sℎ&,! F𝐫#, 𝑡 +
‖𝐫# − 𝐫!‖

𝑐 GT (𝑓)

= expF𝑗2𝜋𝑓
‖𝐫# − 𝐫!‖

𝑐 G𝐹. Pℎ&,!(𝐫#, 𝑡)Q (𝑓) 

≈
𝑎𝑏

2𝜋𝑐‖𝐫# − 𝐫!‖
sinc F𝜋𝑓

𝑎^(𝐫# − 𝐫!)𝐱̀!/^
𝑐‖𝐫# − 𝐫!‖

G sinc F𝜋𝑓
𝑏^(𝐫# − 𝐫!)𝐲̀!/^
𝑐‖𝐫# − 𝐫!‖

G 

=
𝑎𝑏

2𝜋𝑐>𝐫()(# >
sinc F𝜋𝑓

𝑎|𝑥()(# |
𝑐>𝐫()(# >

G sinc F𝜋𝑓
𝑏|𝑦()(# |
𝑐>𝐫()(# >

G . (20) 

Here, we use identities 𝐫,-,# = (𝐫# − 𝐫%)𝐀% = (𝐫# −
𝐫%)(𝐱P%+, 𝐲P%+, 𝐳P%+) = (𝑥,-,# , 𝑦,-,# , 𝑧,-,# ) and ‖𝐫# − 𝐫%	‖ = ‖𝐫,-,# ‖, and 
𝐫,-,#  must not be the origin in the local coordinates. Substituting 
Eq. (20) into the temporal FT of Eq. (13), we obtain  

𝐹* hℎG,-,(𝐫,-,# , 𝑡)i (𝑓) =
1

2𝑐𝑎𝑏 𝐹*cℎ)
# (𝑡)d(𝑓)𝐹* hℎG',,-,(𝐫,-,# , 𝑡)i (𝑓) 

≈
𝐹*cℎ)# (𝑡)d(𝑓)
4𝜋𝑐!V𝐫,-,# V

sinc 1𝜋𝑓
𝑎|𝑥,-,# |
𝑐V𝐫,-,# V

2 sinc 1𝜋𝑓
𝑏|𝑦,-,# |
𝑐V𝐫,-,# V

2 . (21) 

Applying the temporal inverse FT to Eq. (21), we obtain  
ℎ<()((𝐫()(# , 𝑡) ≈

𝐹.0- e
𝐹.Bℎ1# (𝑡)D(𝑓)
4𝜋𝑐2>𝐫()(# >

sinc F𝜋𝑓
𝑎|𝑥()(# |
𝑐>𝐫()(# >

G sinc F𝜋𝑓
𝑏|𝑦()(# |
𝑐>𝐫()(# >

Gf . (22)
 

In the second step of obtaining ℎG,-,(𝐫,-,# , 𝑡), we derive a 
method to measure ℎ)# (𝑡) by analyzing a special case of Eq. 
(22). We constrain the location 𝐫,-,#  on the axis of the transducer 
by letting 𝐫,-,# = (0,0, 𝑧,-,# ), which simplifies Eq. (22) to  

ℎG,-,(𝐫,-,# , 𝑡) ≈ 𝐹*8/ 1
𝐹*cℎ)# (𝑡)d(𝑓)
4𝜋𝑐!t𝑧,-,# t

2 =
ℎ)# (𝑡)

4𝜋𝑐!t𝑧,-,# t
. (23) 

Solving for ℎ)# (𝑡) from Eq. (23), we obtain  
ℎ)# (𝑡) ≈ 4𝜋𝑐!|𝑧,-,# |ℎG,-,(𝐫,-,# , 𝑡) = 4𝜋𝑐!|𝑧,-,# |ℎG%(𝐫#, 𝑡) 

= 4𝜋𝑐!|𝑧,-,# |ℎ% a(0,0, 𝑧,-,# )𝐀𝐫!
8/ + 𝐫%, 𝑡 +

|𝑧,-,# |
𝑐 b . (24) 

Here, we use the identity 𝐫# = 𝐫,-,# 𝐀%8/ + 𝐫% = (0,0, 𝑧,-,# )𝐀%8/ +
𝐫%. In practice, we repeat the measurement of the right-hand 
side of Eq. (24) and use the average to represent ℎ)# (𝑡). 

In summary, we measure ℎ)# (𝑡) experimentally on the basis 
of Eq. (24) and substitute the measurement into Eq. (22) to 
obtain ℎG,-,(𝐫,-,# , 𝑡). Further, we perform SVD to ℎG,-,(𝐫,-,# , 𝑡) 
according to Eq. (16) and obtain singular functions ℎG,-,,4(𝐫,-,# ) 
and 𝜂4(𝑡), 𝑘 = 1,2, … , 𝐾. We use these functions in Eq. (18) to 
implement the fast forward operator. 

IV. DISCRETIZATION OF THE FORWARD OPERATOR 
We express the forward operator in two different forms in 

Eqs. (6) and (18), respectively. First, we discretize the forward 
operator implemented in Eq. (6). In the temporal domain, we 
choose points of interest 𝑡9 = 𝑡/ + (𝑙 − 1)𝜏, 𝑙 = 1,2, … , 𝐿, 
where 𝑡/ is the initial time, 𝜏 is the sampling step size, and 𝐿 is 
the number of time points. Then we discretize the temporal FT 
of ℎ)# (𝑡) as 𝐹*cℎ)# (𝑡)d9% ≈ 𝐹9(ℎ9#)(𝑙#), 𝑙# = 1,2,… , 𝐿, where we 
define ℎ9# = ℎ)# (𝑡9), 𝐹*cℎ)# (𝑡)d9% = 𝐹*cℎ)# (𝑡)d(𝑓9%), 𝑙, 𝑙# ∈
{1,2, … , 𝐿}, and let 𝐹9 represent the discrete FT with respect to 
𝑙. The temporal frequencies 𝑓9% , 𝑙# = 1,2,… , 𝐿 are selected 
according to the requirement of the discrete FT. We further 
denote the 𝑚,-,-th location in the local coordinates as 𝐫,-,,:#$#

# =
c𝑥,-,,:#$#

# , 𝑦,-,,:#$#
# , 𝑧,-,,:#$#

# d and define ℎG,-,,:#$#,9 =
ℎG,-,c𝐫,-,,:#$#

# , 𝑡9d,𝑚,-, = 1,2,… ,𝑀,-,, where 𝑀,-, is the number 
of locations of interest in the local coordinates. Thus, we 
discretize Eq. (22) as  

ℎ<()(,3"#",4 ≈
1

4𝜋𝑐2>𝐫()(,3"#"
# >

𝐹40-g
𝐹4(ℎ4#)(𝑙#)

× sincS𝜋𝑓4$
𝑎^𝑥()(,3"#"

# ^
𝑐>𝐫()(,3"#"

# >
T sinc S𝜋𝑓4$

𝑏^𝑦()(,3"#"
# ^

𝑐>𝐫()(,3"#"
# >

Tj
(𝑙),

 

𝑚,-, = 1,2,… ,𝑀,-,, 𝑙 = 1,2, … , 𝐿. (25) 
Further, we discretize the point source response ℎ%(𝐫#, 𝑡) as 
ℎ%,:,9 = ℎ%(𝐫:# , 𝑡9), 𝑛 = 1,2, … ,𝑁,𝑚 = 1,2,… ,𝑀, 𝑙 =
1,2, … , 𝐿. Here, 𝑀 is the number of voxels (source points) in the 
image domain. On the basis of the relation ℎ%(𝐫:# , 𝑡9) =
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ℎG% h𝐫:# , 𝑡9 −
;𝐫&% 8𝐫!;

<
i = ℎG,-, 1(𝐫:# − 𝐫%)𝐀%, 𝑡9 −

;𝐫&% 8𝐫!;
<

2, we 

obtain the values of ℎ%,:,9 through spatiotemporal interpolation 
of the values of ℎG,-,,:#$#,9. Denoting 𝑝̂%,9 = 𝑝̂(𝐫%, 𝑡9) and 𝑝",: =
𝑝"(𝐫:# ), we discretize Eq. (6) as  

𝑝̂%,9',=> = ] 𝑣:ℎ%,:,9𝑝",:
?

:6/

, 𝑛 = 1,2, … ,𝑁, 𝑙 = 1,2, … , 𝐿. (26) 

Here, 𝑝̂%,9',=> represents an approximation of 𝑝̂%,9 using this 
relatively slow forward operator, and 𝑣: represents the volume 
of the 𝑚-th voxel. In practice, due to the finite duration of every 
point source response (shown in Fig. 1c, e, and f), given a 
combination of 𝑚 and 𝑛, we need to calculate only for 𝑙 in a 
range of length 𝐿# < 𝐿. Here, 𝐿# is the effective length for 
nonzero values in the discretized point source responses, and 
the computational complexity of the discrete forward operator 
in Eq. (26) is 𝑂(𝑁𝑀𝐿#). 

Next, we discretize the forward operator to a form with lower 
computational complexity from Eq. (18). We denote 
ℎ},-,,4,:#$# = ℎG,-,,4c𝐫,-,,:#$#

# d and 𝜂4,9 = 𝜂4(𝑡9), 𝑘 = 1,2,… , 𝐾, 
𝑚,-, = 1,2,… ,𝑀,-,, 𝑙 = 1,2, … , 𝐿. After obtaining the array 
ℎG,-,,:#$#,9 through Eq. (25), we estimate ℎ},-,,4,:#$# and 𝜂4,9 
through SVD: 

ℎG,-,,:#$#,9 ≈]ℎ},-,,4,:#$#𝜂4,9
5

46/

,

𝑚,-, = 1,2,… ,𝑀,-,, 𝑙 = 1,2, … , 𝐿. (27)

 

We denote ℎG,-,,4,%,: = ℎG,-,,4c(𝐫:# − 𝐫%)𝐀%d, which is obtained 
from the values of ℎ},-,,4,:#$# through spatial interpolation. 

Moreover, we express 𝛿 h𝑡 − ;𝐫%8𝐫!;
<

i in the discrete form as  
1
𝜏 SF𝑡4!,&5- −

‖𝐫3# − 𝐫!‖
𝑐 G𝛿4,4!,& + F

‖𝐫3# − 𝐫!‖
𝑐 − 𝑡4!,&G𝛿4,4!,&5-T ,

𝑛 = 1,2,… ,𝑁,𝑚 = 1,2,… ,𝑀, 𝑙 = 1,2,… , 𝐿. (28)
 

Here, 𝑙%,: denotes the temporal index such that 𝑡9!,& ≤
;𝐫&% 8𝐫!;

<
< 𝑡9!,&@/, and we use the Kronecker delta function  

𝛿9,9% = �0, 𝑙 ≠ 𝑙#,
1, 𝑙 = 𝑙#. (29) 

We discretize the forward operator in Eq. (18) as  
𝑝̂!,467&8 =

A𝜂*,4 ∗4
+

*,-

A 𝑣3ℎ<()(,*,!,3𝑝",3
1
𝜏
⎣
⎢
⎢
⎢
⎡ F𝑡4!,&5- −

‖𝐫3# − 𝐫!‖
𝑐 G𝛿4,4!,&

+F
‖𝐫3# − 𝐫!‖

𝑐 − 𝑡4!,&G𝛿4,4!,&5-⎦
⎥
⎥
⎥
⎤9

3,-

,
 

𝑛 = 1,2,… ,𝑁, 𝑙 = 1,2,… , 𝐿. (30) 
Here, 𝑝̂%,9AB'C represents an approximation of 𝑝̂%,9 using the fast 
forward operator, and ∗9 denotes the discrete convolution with 
respect to 𝑙. In practice, we choose a value of 𝐿 so that log!𝐿 is 
an integer, and we implement the discrete convolution using the 
temporal FFT. Thus, the computational complexity of the 
discrete forward operator in Eq. (30) is 𝑂(𝑁𝑀𝐾) +
𝑂(𝑁(𝐿log!𝐿)𝐾). 

The big 𝑂 notations for both operators mean that there exist 
constants 𝛽/, 𝛽!, and 𝛽7 (all independent from 𝑁, 𝑀, 𝐿, 𝐿#, and 
𝐾) such that the computations based on the slow and fast 

forward operators, respectively, can be done in times less than 
𝛽/𝑁𝑀𝐿# and 𝛽!𝑁𝑀𝐾 + 𝛽7𝑁(𝐿log!𝐿)𝐾. The slow forward 
operator consists of only spatial integration; whereas, the fast 
forward operator consists of two layers of operations, and the 
terms 𝛽!𝑁𝑀𝐾 and 𝛽7𝑁(𝐿log!𝐿)𝐾 are responsible for the inner 
layer spatial integration with ℎG,-,,4,%,: and the outer layer 
temporal convolution with 𝜂4,9, respectively. 

V. A HYBRID METHOD FOR IMAGE RECONSTRUCTION FROM 
SPARSELY SAMPLED RAW DATA AND A PRIOR IMAGE 

We first acquire signals from an object with transducers at 
enough locations (𝑁, dense sampling). Then we continuously 
acquire multiple sets of signals from the object with transducers 
at a smaller number of locations (𝑁#, sparse sampling) for fast 
functional imaging. We assume that the object does not move 
as a whole during functional imaging. 

For image reconstruction, we denote the densely sampled 
signals and a set of sparsely sampled signals as 𝐩�DE×/ and 
𝐩�D%E×/
G , respectively. We first obtain an image 𝐩�",?×/ from the 

densely sampled signals 𝐩�DE×/ by solving the regularized 
optimization problem  

𝐩x",9×- =

argmin
𝐩',(×*∈ℝ(	,𝐩',(×*?𝟎

P𝛾)>𝐇AB×9𝐩",9×- − 𝐩xAB×->
2 + 𝜆^𝐩",9×-^/CQ (31)

 

using a fast iterative shrinkage-thresholding algorithm (FISTA) 
with a constant step size [37]. Here, 𝛾- represents the system-
specific measurement calibration factor, meaning 𝛾-𝐩�DE×/ is 
the reading of the data acquisition system; 𝐇DE×? is the dense-
sampling system matrix; 𝜆 means the regularization parameter; 
and t𝐩",?×/t+H denotes 𝐩",?×/’s total variation (TV) norm, 
defined as  

t𝐩",?×/t+H = ]

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓
1
𝑝",:',:(,:) − 𝑝",:'8/,:(,:)

𝑣:,/
2
!

+

1
𝑝",:',:(,:) − 𝑝",:',:(8/,:)

𝑣:,!
2
!

+

1
𝑝",:',:(,:) − 𝑝",:',:(,:)8/

𝑣:,7
2
!

!I:'I?'
!I:(I?(
!I:)I?)

. (32) 

In this definition, 𝑣:,/, 𝑣:,!, and 𝑣:,7 represent the voxel sizes 
along the 𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively; 𝑀/, 𝑀!, and 
𝑀7 (𝑀 = 𝑀/𝑀!𝑀7) denote the number of voxels in the first, 
second, and third dimensions, respectively; and we reshape the 
column vector 𝐩",?×/ to a 3D array 𝐩",?'×?(×?) with elements 
𝑝",:',:(,:) to express 3D information, 𝑚/ = 1,2,… ,𝑀/, 𝑚! =
1,2,… ,𝑀!, 𝑚7 = 1,2,… ,𝑀7. 

To obtain an image from 𝐩�D%E×/
G  directly, we can use 𝐩�D%E×/

G  
and the sparse-sampling system matrix 𝐇D%E×?

'  to replace 
𝐩�DE×/ and 𝐇DE×?, respectively, in Eq. (31) and solve the 
problem  

𝐩x",9×-$ =

argmin
𝐩',(×*+ ∈ℝ(	,𝐩',(×*+ ?𝟎

P𝛾)>𝐇A$B×9
& 𝐩",9×-$ − 𝐩xA$B×-

D >
2 + 𝜆^𝐩",9×-$ ^/CQ (33)

 

using FISTA with a constant step size [37]. However, the 
nonlinearity introduced by the nonnegativity constraint and TV 
regularization may disrupt the functional signals. To maintain 
the linearity under sparse sampling, we treat 𝐩�",?×/ as a prior 
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image and apply a smooth modulation to it to extract the 
dominant sources of aliasing artifacts by solving the 
optimization problem  

𝛍x",9$×- =

argmin
𝛍',($×*∈ℝ(

$
�𝐇A$B×9

& P𝐩x",9×-⊙B𝐔9×9$𝛍",9$×-DQ − 𝐩xA$B×-
D �

2
(34) 

using FISTA without regularization. Here, 𝛍",?%×/ is a 
modulation image in the form of a column vector of size 𝑀# =
𝑀/
#𝑀!

#𝑀7
#  (≪ 𝑀), the symbol ⊙ denotes the element-wise 

product, and 𝐔?×?% is an upsampling operator transferring 
𝛍",?%×/ to a smooth modulation image in the column-vector 
form of size 𝑀. To implement 𝐔?×?%, we reshape the vector 
𝛍",?%×/ into a 3D array 𝛍",?'%×?(%×?)% , apply trilinear 
interpolation to the 3D array to obtain 𝛍",?'×?(×?), and flatten 
it to obtain 𝐔?×?%𝛍",?%×/. The array 𝛍",?'×?(×?) is a smooth 
array determined only by 𝑀# independent values. Thus, the 
expression 𝐩�",?×/⊙c𝐔?×?%𝛍",?%×/d represents a smooth 
modulation of the prior image 𝐩�",?×/. By solving the 
optimization problem in Eq. (34) we obtain 𝛍�",?%×/ and 
represent the dominant sources causing aliasing artifacts by 
𝐩�",?×/⊙c𝐔?×?%𝛍�",?%×/d, which correspond to the dominant 
signals causing aliasing artifacts 𝐇D%E×?

' h𝐩�",?×/⊙

c𝐔?×?%𝛍�",?%×/di. It needs to be noted that the implementation 
of the forward operator based on Eq. (30) allows for efficient 
slicing of the system matrix, such as the matrix 𝐇D%E×?

' , a 
slicing with respect to transducer element indices. Also, for a 
given set of parameters in FISTA, the solution to Eq. (34), 
𝛍�",?%×/, depends linearly on 𝐩�D%E×/

G . 

 
Fig. 2 Workflow of the hybrid method for image reconstruction from sparsely 
sampled raw data and a prior image. 

Then, we apply the dense-sampling system matrix 𝐇DE×? to 
𝐩�",?×/⊙c𝐔?×?%𝛍�",?%×/d to simulate the densely sampled 
signals 𝐇DE×? h𝐩�",?×/⊙ c𝐔?×?%𝛍�",?%×/di, from which we 
use the universal back-projection (UBP) method [38] to 
reconstruct an image, denoted as 𝐩�"J (modulated UBP image). 
We further remove the aliasing artifacts caused by signals from 
𝐩�",?×/⊙c𝐔?×?%𝛍�",?%×/d by subtracting these signals from 

𝐩�D%E×/
G  to obtain the residual signals 𝐩�D%E×/

G −
𝐇D%E×?
' h𝐩�",?×/⊙c𝐔?×?%𝛍�",?%×/di and using them with the 

UBP method to reconstruct an image, denoted as 𝐩�"K  (residual 
UBP image). Due to the linearity of the UBP method, both 
images 𝐩�"J and 𝐩�"K  are linearly dependent on 𝛍�",?%×/ and thus 
on 𝐩�D%E×/

G . We combine these two images to obtain the final 
image  

𝐩�"L = 𝐩�"J + 𝐩�"K (35) 
for 𝐩�D%E×/

G . We summarize the workflow of the hybrid method 
in Fig. 2. We repeat the process for other sets of sparsely 
sampled raw data to obtain the images for further functional 
signal extraction.  

Note that, an accurate reconstruction using UBP requires 
specific transducer array geometries, e.g., planar, spherical, and 
cylindrical surfaces [38], and artifacts occur when a 
hemispherical array is used in this study. However, these 
artifacts are negligible compared with those caused by sparse 
sampling, and the linearity of UBP is critical for the functional 
imaging discussed here. For simplicity, we use UBP in the 
hybrid method. 

VI. CORRELATION-BASED FUNCTIONAL SIGNAL 
EXTRACTION 

Given a set of reconstructed images 𝐩�",9* , 𝑙A=1,2,… ,𝐿A in 
functional imaging, we propose a method to extract functional 
signals from them through regularized temporal correlation 
with a functional signal profile. To explain the process, we 

define sum
M
𝑎M = ∑ 𝑎M

N
M6/ , mean

M
𝑎M =

'OJ
+

P+

N
, and norm

M
𝑎M =

�∑ 𝑎M!
N
M6/  for a series of numbers 𝑎M , 𝑗 = 1,2, … , 𝐽. We assume 

that the functional signal has a profile 𝛼A,9* , 𝑙A=1,2,… ,𝐿A, 

normalized to 𝛼}A,9* = 1𝛼A,9* −mean9*
%

𝛼A,9*%21norm9*
%%

1𝛼A,9*%% −

mean
9*
%

𝛼A,9*%22
8/

. The 𝑚-th voxel has a value of 𝑝̂",9*,: in the 𝑙A-

th image 𝐩�",9*. We can quantify the functional amplitude at the 
𝑚-th voxel through the PCC between 𝑝̂",9*,: and 𝛼A,9*:  

PCC
9*
c𝑝̂",9*,:, 𝛼A,9*d =

sum
9*
a𝛼}A,9* 1𝑝̂",9*,: −mean9*

%
𝑝̂",9*%,:2b

norm
9*

1𝑝̂",9*,: −mean9*
%

𝑝̂",9*%,:2
,

𝑚 = 1,2,… ,𝑀, (36)

 

which is not robust for very-low-amplitude regions. To improve 
the robustness, we add a regularization term to the denominator 
and obtain the regularized PCC (PCCR):  
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PCCRQ*
9*

c𝑝̂",9*,:, 𝛼A,9*d =

sum
9*
a𝛼}A,9* 1𝑝̂",9*,: −mean9*

%
𝑝̂",9*%,:2b

⎝

⎜
⎛

norm
9*

1𝑝̂",9*,: −mean9*
%

𝑝̂",9*%,:2

+𝜆Amean:%
norm
9*

1𝑝̂",9*,:% −mean
9*
%

𝑝̂",9*%,:%2
⎠

⎟
⎞

.

𝑚 = 1,2,… ,𝑀. (37)

 

A 3D functional image is formed by assigning the regularized 
correlation to each voxel. 

The assumed functional signal profile 𝛼A,9* is directly 
available in the numerical simulations (Eq. (43)). For mouse 
brain functional imaging in vivo, we obtain 𝛼A,9* through an 
initial UBP reconstruction, which is clarified in the section on 
in vivo study. 

VII. EFFICIENCY AND ACCURACY OF THE FAST FORWARD 
OPERATOR 

In this study, we used the 3D PACT system reported 
previously by Lin et al. [36], which consists of four 256-
element arc transducer arrays (central frequency of 2.25 MHz 
and one-way bandwidth of 98%), and we assumed a 
homogeneous medium. In numerical simulations, we 
downsized each arc to 128 elements. 

To quantify the efficiency and accuracy of the fast forward 
operator based on Eq. (30), we performed numerical 
simulations by placing a numerical phantom of size 1 × 1 ×
1	cm7 (Fig. 3a, with voxel values of 1 inside the solid and 0 
elsewhere) in four image subdomains of the system (𝐷/, 𝐷!, 𝐷7, 
and 𝐷R shown in Fig. 3b). The virtual 2D array formed by the 
rotation of the four arc arrays is marked by blue arcs and the 
rotation of the four subdomains around the same axis covers a 
domain (marked by black-dotted circles and arcs) enclosing all 
the image domains discussed in this study. We also 
implemented the slow forward operator according to Eq. (26) 
for comparison. 

We first quantified the efficiency of the fast forward operator 
by performing forward simulations with the numerical phantom 
in the subdomain 𝐷/ using both operators with parameters 𝑀 =
50 × 50 × 50 (voxel size of 0.2 × 0.2 × 0.2	mm7), 𝑁 =
396 × 128 (the four-arc array rotated for 99 locations and each 
arc downsized to 128 elements), 𝐿 = 4096, 𝐿# = 151, and 𝐾 =
3. We ran the single-thread-CPU version (implemented in C++) 
of each operator 36 times on a server with Ubuntu 20.04.6 LTS 
and Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. Denoting 
the computation times of both operators as 𝑡AB'C and 𝑡',=>, 
respectively, we obtained mean(𝑡AB'C) = 6.3	min, std(𝑡AB'C) =
0.4	min, mean(𝑡',=>) = 267	min, and std(𝑡',=>) = 19	min 
for the 36 simulations and compared the values in Fig. 3c. 
Further, we performed a Welch’s t-test between 42𝑡AB'C and 
𝑡',=>, showing an insignificant difference (p-value = 0.59). 
Thus, the fast forward operator with 𝐾 = 3 has approximately 
42 times the speed of the slow forward operator. As 𝐾 varies, 
the computation cost of the fast forward operator, 𝑂(𝑁𝑀𝐾) +
𝑂(𝑁(𝐿log!𝐿)𝐾), is approximately proportional to 𝐾. 

Note that the single-thread-CPU versions of the slow and fast 
forward operators were used here for a fair comparison of the 
operators’ computation costs. In both operators, most of the 
computations are explicit matrix-vector multiplications and can 
be easily parallelized. Thus, for further image reconstructions, 
we implemented both operators in C++ and CUDA and used an 
NVIDIA A100 GPU for hardware acceleration. For the forward 
simulation of the subdomain 𝐷/, GPU acceleration reduced 
computation times of the fast and slow operators from 6.3 min 
and 267 min to 0.31 min and 10.2 min, respectively. 

 
Fig. 3 Efficiency and accuracy of the fast forward operator. a A numerical 
phantom formed by three rectangular cuboids (each of size 2.6 × 2.6 ×
10	mm#) intersecting at their centers. Voxel values are 1 inside the phantom 
and 0 outside. Three lines (L1, L2, and L3) are picked for image-domain 
comparisons in Fig. 8 of Appendix A. b A virtual 2D array (blue-solid arcs), 
four subdomains of size 1 × 1 × 1	cm# (𝐷$, 𝐷%, 𝐷#, and 𝐷&), and the domain 
occupied by rotations of the four subdomains around the array axis (black-
dotted circles and arcs). c Computation times (𝑡'()* and 𝑡)+,-) of the fast and 
slow forward operators, respectively, for the forward simulations with the 
numerical phantom in 𝐷$ (36 repetitions). d Relative error of the fast forward 
operator for subdomains 𝐷$, 𝐷%, 𝐷#, and 𝐷&, and for 𝐾 = 1,2,3,4,5. e Relative 
error of the reconstructed image for the numerical phantom placed in 
subdomains 𝐷$, 𝐷%, 𝐷#, and 𝐷&, and for 𝐾 = 1,2,3,4,5. 

The accuracy of the fast forward operator is dependent on the 
value of 𝐾 and we quantified this dependency by calculating the 
relative errors of the system matrix and the reconstructed 
image. For the numerical phantom (shown in Fig. 3a) placed in 
the subdomain 𝐷S, we denote the ground truth image as 𝐩",T,, 
the ground-truth system matrix as 𝐇T,

',=> (elements defined in 
Eq. (26)), and the system matrix compressed to the 𝐾-th 
singular function as 𝐇T,,5

AB'C  (elements defined in Eq. (30)). Next, 
we define the system-matrix relative error as  

𝛿c𝐇T,,5
AB'C d =

V𝐇T,,5
AB'C −𝐇T,

',=>V
!

V𝐇T,
',=>V

!

. (38) 

Here, we use the spectral norm of a matrix 𝐇,  
‖𝐇‖! = ¤λJBU(𝐇+𝐇), (39) 

defined as the square root of the largest eigenvalue λJBU of the 
symmetric matrix 𝐇+𝐇, and 𝐇+ means the transpose of 𝐇. 
Then, we define the reconstructed-image relative error as  

𝛿c𝐩�",T,,5d =
V𝐩�",T,,5 − 𝐩",T,V

V𝐩",T,V
, (40) 

with the image 𝐩�",T,,5 reconstructed by solving the optimization 
problem  

𝐩�",T,,5 = argmin
𝐩-∈ℝ.,𝐩-Y𝟎

V𝐇T,,5
AB'C 𝐩" −𝐇T,

',=>𝐩",T,V
! (41) 
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using FISTA with a nonnegativity constraint of the image. 
For subdomains 𝐷/, 𝐷!, 𝐷7, and 𝐷R, and for 𝐾 = 1,2,3,4,5, 

we performed power iterations to estimate each largest 
eigenvalue and calculated 𝛿c𝐇T,,5

AB'C d, and we performed 256 
FISTA iterations to obtain 𝐩�",T,,5 (intermediate results for 𝐾 =
3 shown in Fig. 8 of Appendix A) and calculated 𝛿c𝐩�",T,,5d. 
We compare the values of 𝛿c𝐇T,,5

AB'C d and 𝛿c𝐩�",T,,5d in Fig. 3d 
and e, respectively. When 𝐾 = 3, the system-matrix relative 
error is below or very close to 1% for all subregions, and the 
reconstructed-image relative error is below 1% for all 
subregions. On the one hand, by changing 𝐾 from 3 to 4, we 
observed negligible variations in the reconstructed structural 
and functional images in this study. On the other hand, 
changing 𝐾 from 3 to 2 significantly increases the relative 
errors, e.g., a reconstructed-image relative error of 6.9% for 𝐷/, 
which has a risk of affecting certain regions of the image and 
compromising functional imaging. To achieve both high 
efficiency and high accuracy of the forward operator, we used 
𝐾 = 3 in this study. 

Note that, for high interpretability of the intermediate results 
(Fig. 8), we used a simple numerical phantom for simulations 
in subdomains 𝐷/, 𝐷!, 𝐷7, and 𝐷R. More realistically, we 
designed two complex numerical phantoms with 𝑀 = 300 ×
300 × 150 (voxel size of 0.2 × 0.2 × 0.2	mm7, shown in Fig. 
9a and b, respectively, in Appendix B), performed simulations 
for both phantoms in a domain 𝐷 (shown in Fig. 9c), and 
calculated the image relative error 𝛿c𝐩�",T,7d for the fast forward 
operator with 𝐾 = 3. After 1280 FISTA iterations, the image 
relative error is 0.96% for phantom 1 and 0.78% for phantom 2 
(both below 1%), which further demonstrates the high accuracy 
of the fast forward operator. 

VIII. NUMERICAL SIMULATION OF THE HYBRID METHOD FOR 
IMAGE RECONSTRUCTION 

We demonstrated the performance of the hybrid method by 
using it to reconstruct images from signals of a numerical 
phantom acquired by virtual arrays with different numbers of 
arcs: 4𝑁,=- = 76, 40, 28, 20, 16, 12. Here 𝑁,=- is the number of 
rotating locations of the four-arc array (with 128 transducer 
elements in each arc) in a virtual array. Images of the numerical 
phantom reconstructed using UBP, the regularized iterative 
method (Eq. (33)), and the hybrid method (Eq. (35) with a 
prior image obtained by performing a smooth modulation to the 
numerical phantom) are shown in the first three columns in Fig. 
4a. The used virtual arrays are shown as blue arcs with red 
boundaries in the fourth column in Fig. 4a. We see that, as 
4𝑁,=- decreases from 76 to 12, the artifacts in the images 
reconstructed using UBP become more abundant. The 
regularized iterative method mitigates the relatively weak 
artifacts in all images but failed to suppress the strong artifacts 
such as in the images with 4𝑁,=- = 16, 12. In contrast, with the 
help of the prior image, the hybrid method significantly 
mitigates the artifacts. Quantitatively, for each method, we 
calculate the structural similarity index measures (SSIMs) 
between the images with 4𝑁,=- = 40, 28, 20, 16, 12 and that 
with 4𝑁,=- = 76, and compare the values in Fig. 4b. The hybrid 

method performs the best in mitigating artifacts and 
maintaining true features. 

 
Fig. 4 UBP, regularized iterative method, and the proposed hybrid method for 
sparse-sampling imaging, and their linearity tests. a Images reconstructed by 
the three methods (first three columns) from signals detected at sparsely 
distributed elements (red-bounded blue curves in the fourth column) for 
4𝑁+,. = 76, 40, 28, 20, 16, 12. Examples of maintained features and 
suppressed artifacts are indicated by white-solid and white-dotted arrows, 
respectively. b SSIMs between the reconstructed images with 4𝑁+,. =
40, 28, 20, 16, 12 and those with 4𝑁+,. = 76 for the three methods. c Linearity 
tests of the three methods for 4𝑁+,. = 12. Scale bar, 5 mm. 

Additionally, we tested the linearity of each method by 
reconstructing two numerical phantoms and their summation. 
MAPs of the reconstructed images and the linearity test 
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residuals (image of the summation subtracted by images of the 
two phantoms) of the three methods with 4𝑁,=- = 12 are shown 
in Fig. 4c. The test validated that UBP and the hybrid method 
are linear, but the regularized iterative method is nonlinear. In 
the hybrid method, the prior image accuracy does not affect the 
linearity, but an inaccurate prior image may compromise the 
hybrid method’s effectiveness in mitigating artifacts. 

Due to the requirement of a prior image, the hybrid method’s 
practical value mainly lies in fast functional imaging with 
sparse sampling, which is discussed in the next section. 

IX. NUMERICAL SIMULATION OF THE HYBRID METHOD FOR 
FAST FUNCTIONAL IMAGING 

We obtained numerical phantoms for functional imaging 
using  

𝐩",9* = 𝛼[,9*𝐩",[ + 𝛼A,9*𝐩",A, 𝑙A=1,2,… ,𝐿A. (42) 
Here, 𝐩",9* is the 𝑙A-th numerical phantom; 𝐩",[ (Fig. 5a, voxel 
size 0.1 × 0.1 × 0.1	mm7) is the background phantom obtained 
in imaging with dense sampling and 𝐩",A (Fig. 5b) is the 
functional phantom obtained by smoothing, downsampling, and 
zero padding of 𝐩",[; 𝛼[,9* and 𝛼A,9* are modulation factors of the 
two phantoms, respectively; and 𝐿A is the number of numerical 
phantoms for functional imaging. The way 𝐩",[ is obtained 
guarantees that the mean value of nonzero voxels in 𝐩",[ 
approximately equals that in 𝐩",A. For simulations in this study, 
we used a virtual array formed by 12 arc arrays (Fig. 5c), let 
𝐿A = 36, and let 𝛼[,9*~𝑁(1,0.1), 𝑙A=1,2,… ,𝐿A (Fig. 5d), an 
amplitude similar to the image relative difference we observed 
in mouse brain functional imaging. Also, we let  

𝛼A,9* =
𝐴A
2 1sin

6𝜋(𝑙A − 1)
𝐿A

+ 12 , 𝑙A=1,2,… ,𝐿A, (43) 

where 𝐴A is the functional amplitude. The values of 𝛼A,9* with 
𝐴A = 0.18, 0.06, 0.02 are shown in Fig. 5e and used in the 
simulations. 

 
Fig. 5 Numerical phantoms for functional imaging. a-b The background and 
functional numerical phantoms, respectively, for functional imaging 
simulation. c A virtual array formed by 12 arc arrays, shown as arcs with red 
boundaries. d-e Modulation factors of the background and functional phantoms, 
respectively. 

We performed forward simulations (4𝑁,=- = 12), image 
reconstructions (UBP, the regularized iterative method in Eq. 
(33), and the hybrid method in Eq. (35)), and functional signal 
extractions (Eq. (37)) with different values of 𝜆A. The 

functional images extracted from four sets of images (ground-
truth images and images reconstructed with three methods) 
using the regularized-correlation-based method with 𝜆A = 1.6 
are shown in Fig. 6 and Supplementary Video 1. We observe 
that artifacts in the UBP-reconstructed images cause artifacts in 
the functional images, the regularized iterative method 
mitigates artifacts in functional images but also compromises 
the true functional region, and the proposed hybrid has the best 
performance in functional imaging with sparse sampling. The 
results with other values of 𝜆A also support this observation. 

 
Fig. 6 Functional images extracted using the regularized-correlation-based 
method with 𝜆' = 1.6 from ground-truth images and images reconstructed with 
UBP, the regularized iterative method, and the hybrid method for 𝐴' =
0.18, 0.06, 0.02. The first three rows show both the 3D functional and 
background images, and the last three rows show the MAPs of the functional 
images along the 𝑧-axis. In the first and fourth rows, the true functional regions 
and examples of false positive regions are indicated by white-solid and white-
dotted arrows, respectively. 

It needs to be noted that, in the hybrid method, both the 
modulated UBP image 𝐩�"J and the residual UBP image 𝐩�"K  are 
linearly dependent on the sparsely sampled signals 𝐩�D%E×/

G . To 
visualize the functional signals in both 𝐩�"J and 𝐩�"K , we apply the 
regularized-correlation-based method with 𝜆A = 1.6 to both sets 
of reconstructed images and compare them in Fig. 10 ( 
Appendix C) and Supplementary Video 2. We notice 
significant functional signals in both 𝐩�"J and 𝐩�"K . On the one 
hand, functional regions obtained from 𝐩�"J (column 3 in Fig. 
10) are much smaller than those from the ground truth images 
(column 1) and the hybrid images (column 2). In fact, 
reconstruction of the modulated UBP image 𝐩�"J is constrained 
by the prior image, which may break function signals in certain 
regions. On the other hand, functional images obtained from 𝐩�"K  
(column 4 in Fig. 10) show an elevated background after 
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normalization, which results in an enlarged true functional 
region and more false-positive regions. Thus, only the 
modulated UBP image 𝐩�"J or the residual UBP image 𝐩�"K  is not 
sufficient in providing functional signals, and it is necessary to 
combine them (𝐩�"L = 𝐩�"J + 𝐩�"K ) for robust functional imaging. 

X. MOUSE BRAIN FUNCTIONAL IMAGING IN VIVO 
Finally, we applied UBP, the regularized iterative method, 

and the hybrid method to mouse brain functional imaging in 
vivo using the four-arc system. We first obtained a prior image 
of a mouse brain through dense sampling (4𝑁,=- = 396), then 
electrically stimulated its right front paw and continuously 
acquired signals from the mouse brain through sparse sampling 
(4𝑁,=- = 76, 2 s per image). 

 
Fig. 7 Sparse-sampling mouse brain functional imaging in vivo. a A densely 
sampled image of a mouse brain reconstructed by UBP (left column, 4𝑁+,. =
396) and sparsely sampled images of the mouse brain reconstructed using UBP 
(first row), the regularized iterative method (second row), and the hybrid 
method (third row), respectively, for 4𝑁+,. = 40, 20, 12. Examples of 
suppressed artifacts and maintained features are indicated by white-dotted and 
white-solid arrows, respectively. b Electrical stimulation to the mouse’s right 
front paw: five cycles, each with 12-s stimulation on and 12-s off. c Functional 
images obtained from the images reconstructed using UBP (first row, 𝜆' =
0.32), the regularized iterative method (second row, 𝜆' = 0.08), and the hybrid 
method (third row, 𝜆' = 0.32), respectively, for 4𝑁+,. = 40, 20, 12. The true 
functional regions in all images are indicated by white-solid arrows, and 
examples of false positive regions are indicated by white-dotted arrows. 

To obtain the functional signal profile 𝛼A,9*, we first let it be a 
sinusoidal profile synchronized with the paw stimulation 
pattern and used it in the correlation-based method to obtain a 
functional image from UBP reconstructed images with 4𝑁,=- =
76. Then we identified a functional region from the functional 
image by thresholding using 90% of its maximum voxel value, 
calculated the mean value in this region for each UBP 
reconstructed image, and assigned the mean values to 
𝛼A,9* , 𝑙A=1,2,… ,𝐿A. 

We used subsets of the sparsely sampled signals (4𝑁,=- =
40, 20, 12) to demonstrate the performance of the hybrid 
method. For one set of sparsely sampled signals, the images 
reconstructed using UBP, the regularized iterative method, and 
the hybrid method for 4𝑁,=- = 40, 20, 12 are shown in Fig. 7a. 
We observe that the iterative method mitigates the artifacts 
(e.g., those indicated by white-dotted arrows) but compromises 
low-amplitude features (e.g., those indicated by white-solid 
arrows for 4𝑁,=- = 20). In contrast, the hybrid method 
maintains low-amplitude features while substantially 
mitigating the artifacts, resulting in images more similar to the 
densely sampled image. Electrical stimulation of the mouse’s 
right front paw occurred in five cycles, each with 12-s 
stimulation on and 12-s off, as shown in Fig. 7b. We obtained 
functional images from the images reconstructed through the 
three methods for 4𝑁,=- = 40, 20, 12 using 𝜆A =
0.02, 0.08, 0.32, 1.28, 5.12, and observed that, for UBP and the 
hybrid method, 𝜆A = 0.32 was the best choice to maintain the 
true functional region and suppress false positive regions. For 
the regularized iterative method, 𝜆A = 0.08 was the best choice. 
We summarize the obtained functional images with the best 
values of 𝜆A in Fig. 7c and Supplementary Video 3. Results 
from UBP and the hybrid method match well for 4𝑁,=- = 40. 
The hybrid method is slightly (significantly) better than UBP 
for 4𝑁,=- = 20 (4𝑁,=- = 12). Due to the violation of linearity, 
the regularized iterative method compromises the true 
functional region: leading to its shrinkage for 4𝑁,=- = 40, 20 
and its decimation altogether for 4𝑁,=- = 12. In summary, the 
proposed hybrid method enables fast functional imaging with 
highly sparse sampling. 

XI. CONCLUSIONS AND DISCUSSION 
Here, we compressed the massive system in 3D PACT using 

spatiotemporal SVD and temporal FFT. On the basis of the 
compression, we proposed a hybrid method for fast functional 
imaging by using a prior image to manipulate the system matrix 
in sparse sampling. In both numerical simulations and mouse 
brain functional imaging in vivo, the hybrid method 
substantially mitigates artifacts in the reconstructed images and 
reduces false positive regions in the functional image, and its 
linearity is important for maintaining the true functional region. 
Due to its high robustness, the method can accelerate or 
enhance the performance of an existing system and reduce the 
cost of a future system for functional imaging.  

It needs to be noted that the availability of the functional 
signal profile in this study allows us to use the highly robust 
correlation-based method for voxel-wise functional signal 
extraction. In studies where the profile is not available, other 
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types of functional signal extraction methods (e.g., bandpass 
filtering) can be used. 

Although we demonstrated the system matrix compression 
and manipulation methods using only PACT, they are 
applicable to CT and MRI. System matrices in 3D PACT and 
CT correspond to sphere [10] and line [6] integrals, 
respectively, and the latter can be transformed using Grangeat’s 
method [39] into plane integrals, which are locally equivalent 
to sphere integrals. System matrices in 2D PACT and CT [5] 
correspond to circle (reduced from a sphere) and line integrals, 
respectively, which are locally equivalent. MRI is more 
complex due to its high flexibility in k-space sampling. For 
radial-sampling MRI [30], [40], the acquired signals can be 
transformed to integrals on lines and planes, respectively, for 
2D and 3D imaging using the Fourier slice theorem. For other 
sampling patterns, further analysis may disclose proper 
transformations to obtain integrals that are locally equivalent to 
those in PACT. 

APPENDIX A 
RECONSTRUCTIONS OF THE NUMERICAL PHANTOM (SHOWN IN 

FIG. 3A) WITH 𝐾 = 3 FOR 𝐷/, 𝐷!, 𝐷7, AND 𝐷R 

 
Fig. 8 Reconstructions of the numerical phantom (shown in Fig. 3a) with  𝐾 =
3 for 𝐷$, 𝐷%, 𝐷#, and 𝐷&. a1 Relative error of the reconstructed image in the 
subdomain 𝐷$ with 1 to 256 FISTA iterations. a2–a4 Values on the lines L1, 
L2, and L3 (shown in Fig. 3a), respectively, in the reconstructed images with 
𝑛/*01 = 1, 4, 8, 64, 256. b1–b4, c1–c4, and d1–d4 The same analysis for 
reconstructions in subdomains 𝐷%, 𝐷#, and 𝐷&, respectively. 

APPENDIX B 
SIMULATIONS FOR TWO COMPLEX NUMERICAL PHANTOMS 

 
Fig. 9 Simulations for two complex numerical phantoms. a-b Complex 
numerical phantoms 1 and 2, respectively. c A virtual 2D array (blue-solid arcs), 
an image domain of size 6 × 6 × 3	cm# (𝐷, red-solid box), and the black-dotted 
circles and arcs from Fig. 3b. d-e Relative error of the reconstructed image (4 
to 1280 FISTA iterations) for the two numerical phantoms, respectively. 

APPENDIX C 
FUNCTIONAL SIGNALS IN THE MODULATED UBP AND 

RESIDUAL UBP IMAGES 

 
Fig. 10 Functional images extracted using the regularized-correlation-based 
method with 𝜆' = 1.6 from ground-truth images, hybrid images (𝐩B23 = 𝐩B24 +
𝐩B21 ), modulated UBP images (𝐩B24), and residual UBP images (𝐩B21 ) for 𝐴' =
0.18, 0.06, 0.02. Functional signals exist in both the modulated UBP images 
and the residual UBP images, and the signals are complementary. 
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