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Abstract—Tomographic  imaging modalities are
described by large system matrices. To improve the
temporal resolution of functional imaging in tomography,
sparse spatial sampling is often employed, which degrades
the system matrix and introduces artifacts in reconstructed
images. Various existing techniques improve the image
quality without correcting the system matrix and have
limitations. Here, we compress the system matrix to
improve computational efficiency (e.g., 42 times) using
singular value decomposition and fast Fourier transform.
Enabled by the efficiency, we propose fast sparsely
sampling functional imaging by incorporating a densely
sampled prior image into the system matrix, which
maintains the critical linearity while mitigating artifacts. We
demonstrate the methods in 3D photoacoustic computed
tomography with significantly improved image quality and
clarify their applicability to X-ray CT and radial-sampling
MRI due to the similarities in system matrices.

Index Terms—Tomographic imaging, photoacoustic
computed tomography, system matrix compression,
system matrix manipulation, sparsely sampling functional
imaging

[. INTRODUCTION

Tomographic imaging modalities X-ray computed
tomography (CT), magnetic resonance imaging (MRI), and
photoacoustic computed tomography (PACT) produce cross-
sectional images of tissue by detection of penetrating X-rays
[1], nuclear-magnetic-resonance-induced radio waves [2], [3],
and  light-absorption-induced  ultrasonic =~ waves  [4],
respectively. Each modality with a certain setup is described by
a system matrix [5]-[10].

Accurate image reconstruction poses requirements to the
system matrix, which are often violated. For example, to
achieve high temporal resolution for functional imaging, the
spatial sampling density is often sacrificed, which introduces
artifacts in the reconstructed image [11]-[13] and compromises
the functional signal extraction.

Numerous methods have been proposed to compensate for
system-matrix imperfections from image-domain [12], [14]—
[21], signal-domain [22]-[28], and cross-domain [29]-[33]
perspectives. However, due to the large size of each system
matrix, these methods tend not to manipulate or correct the
system matrix directly and have limitations. For sparse
sampling functional imaging, traditional methods [12], [16],
[17], [19]-[21], [26], [33] mitigate artifacts in images but their
performances drop sharply as the sampling density reduces.
Deep neural networks (DNNs) [18], [22], [23], [25], [29], [32],
[34] show high performance in mitigating artifacts but tend to
generate false image features when the sampling density is low,
and they require imaging-modality- and device-dependent
datasets, which are not always available. Moreover, most of the
methods introduce nonlinearity while mitigating artifacts,
which disrupts the functional signals that are often much
weaker than background signals.

Here, we compress the system matrices using singular value
decomposition (SVD) and fast Fourier transform (FFT), which
enables efficient system matrix slicing and manipulation. For
sparse sampling functional imaging, we manipulate the system
matrix with a densely sampled prior image, which effectively
reduces unknown variables in image reconstruction with sparse
sampling. Special configurations in the method maintain
linearity in image reconstruction while substantially mitigating
artifacts, which is critical for weak functional signal extraction.
The proposed system matrix compression and manipulation
methods are applicable to CT, MRI, and PACT. Note that the
system matrix compression’s effect on CT is minor due to the
matrix’s explicit high sparsity [1]. Nevertheless, the system
matrix manipulation facilitates functional imaging in all three
modalities.

In this work, we use 3D PACT for demonstration due to its
representatively large size in tomography: light-absorption-
induced ultrasonic wave from every voxel in an image is
detected by every transducer element and the system matrix is
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intrinsically a 6D tensor [10]. We apply the data-driven system
matrix manipulation to both numerical simulations and in vivo
mouse brain functional imaging with sparse sampling, and
demonstrate that the method substantially improves the
functional image accuracy.

Specifically, in Section II, we describe the forward operator
in PACT and its compression in continuous form. In Section 111,
we simplify the forward operator expression for a flat
rectangular transducer detection surface using the far-field
approximation. Then, we discretize the forward operators
into the system matrices in Section IV. Further, we introduce
a hybrid method for image reconstruction based on system
matrix manipulation (Section V) and a correlation-based
method for functional signal extraction (Section VI), which
enable our system for fast functional imaging. Next, we use
numerical simulations to demonstrate the efficiency and
accuracy of the compressed system matrix (Section VII), the
high performance of the hybrid method in image reconstruction
(Section VIII), and the effectiveness of the fast functional
imaging method (Section IX). Finally, in Section X, we
demonstrate the method’s capability for fast mouse brain
functional imaging in vivo.

Il. FORWARD OPERATOR COMPRESSION IN PACT BASED
ON SVD AND FFT

In an acoustically homogeneous medium, a photoacoustic

wave can be expressed as [10], [35]
Po(r') 0 e =l

POLD) = ) e =il at‘s(t c )d‘" - M
Here, p(r, t) is the pressure at location r and time t, ¢ is the
speed of sound (SOS), V is the volumetric space occupied by
the tissue, po(r') is the light-absorption-induced initial pressure
at r’, and §(t) is the Dirac delta function. In this study, image
reconstruction for PACT is to obtain py(r’) from ultrasonic
detections of p(r, t).

Assume that we have N finite-size ultrasonic transducer
elements. For the n-th transducer element at r,, with detection
surface S,,, the average pressure on the detection surface at time

t is expressed as
N 1
p(ry,t) = — | p(r t)da,(r). (2)
An Js,

Here, A,, denotes the area of the surface S, and the Leibniz
notation da,, (r) represents the area of an infinitesimal subset of
S, around r. We express the spatial impulse response (SIR) in

Eq. (2) as [10] ,
a(t— |[r C—rll)

hsn(r',6) = Ln 2me|lr’ — 1| day (r). 3)
Then Eq. (2) becomes
_ i —F||>
P00 = 52 [ ) 15 f Zmur T
=32 [ ) gt @
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We denote the electric impulse response (EIR) of the n-th
transducer as h,,(t) and express the transducer’s response
using temporal convolution *; as

P, t) = P(1y, 1) *¢ he y (0). (5)
Substituting Eq. (4) into Eq (5) yields

1 d
1) = 32 | Do) g han (0, 0 1)
() #, By (0
— ! ” g ! 6
fV po(r) e e D g ©

= fpo (r"h,(r', t)dr’.
|4

Here, the prime in hg , (t) denotes the time derivative, and h,,
denotes the point source response per unit initial pressure per
unit infinitesimal tissue volume received by a finite-size
transducer element:

hen(t) *¢ hsn (', t
b = B2 en0) -
Eq. (6) describes the forward operator in PACT that maps
po(r") to p(ry, t), and the image reconstruction is to obtain
po(r") from measurements of p(ry,, t).

For convenience in the following discussion, we temporally
shift h, (r',t) and h,, (', t) for r’ such that time 0 aligns with
the onset of the nonzero signal received by the center of the n-
th transducer element r;,:

~ U ) e o
hsn(',t) = hgp | T, t + ———

c

Ir" = x|l " =l
f6(t+ Ll _lr - )
S

2mc|r’ —r||

da, (r) (8)

n
and

~ r-r
h,(r',t) = h, (r’, t+ u)

c

, Ir" — 1l
(I‘ ,t+ T)
2cA,

_ hen(®) x s, ) ©
2cA,

Next, we express the SIR and point source response in the
local coordinates of the transducer elements. In this study, we
assume that the elements have the same EIR: h,,(t) =
he(t),n=12,..,N; and the measurement of h.(t) is
discussed in the next section. We define the local coordinates
of the n-th transducer element using its center location on the
detection surface as the origin, the length direction as the x-
axis, the width direction as the y-axis, and the normal direction
(toward the detection region) as the z-axis. Here, we choose the
x-axis and y-axis to let the coordinates satisfy the right-hand
rule. We express the three axes of the local coordinates as three
vectors of unit length: X,,, §,,, and Z,, (shown in Fig. 1a), which
form an orthonormal matrix

n = &, ¥, Zp). (10)
Locations r’, 1,,, and r in the global coordinates correspond to
the locations 1y, 0, and 1y in the local coordinates of the n-th
transducer element. Coordinate transformations yield 1/, =
(r' —r)A, and ny = (r —r,)A,,. These global and local

hen(t) *¢ hsy
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coordinates satisfy ||’ — || = [Ingll and |Ir" —r|| = |Ing —
Iigll due to the orthonormality of the transformations. We
denote the detection surface (S,, in the global coordinates) in the
local coordinates as Sy, 1, and denote the local Leibniz notation
as day 1 (rg) = da, (r). Thus, in the local coordinates of the
n-th transducer element, we express Eq. (8) as

s (t n ||1‘1c1|| lIng) — mall
R c
hs,n(r,' t) = f 7
Snlcl 27TC||1"1C1 - rlCl”

Ng =@ —r)A, ,n=12,..,N.
All transducer elements are geometrically identical and have
the same local coordinates, meaning S, =S,y and
day 1 (ng) = da,4(rg) for n,n’ € {1,2, ..., N}. We define
Sia = S11a dayg (1) = day 1 (1), and rewrite Eq. (11) as

6<t N ||1'1C’c1|| _ g ; Tyl

hoia i) = | : (12)

el Stel 27TC||I‘1C1 - r101”
which is now independent of the transducer element index n.
Replacing h,(t) and hg, (r',t) with he(t) and hgyq (n, t),
respectively, in Eq. (9), we define
- he(t) *¢ hgja (i, t)
i (g, £) = — e 13
lcl( Icl ) ZCAn ( )
Thus, we need to calculate only the values of Agq(1y, t) and
Ry (14, ), then obtain the values of kg, (r’,t) and h,(r',t)
through coordinate transformation:

day (e »

dayq (ria)

ﬁs,n (l", t) = ﬁs,lcl (rllcly t) (14)
and
T ’ h’e,n (t) *t Es,n (rl! t)
(', 0) = 2¢A,
h(t) %, h qaMo,t)  ~
= =halieo, (9)
respectively, with 1, = (@' —r,)A, for n=12,..,N.

Through these relations, we express both the SIR and the point
source response in the local coordinates.
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Fig. 1 Compression of the forward operator based on SVD. a A point source (a
red dot), the n-th transducer element (a black rectangular centered at r;,), and
the element’s local coordinate system with axes X,,, ¥, and Z,. b Four point
sources A, B, C, and D (red dots) in the local coordinate system of the n-th
transducer element. Points A, D, and r,, are on the same line. ¢ The responses
of the transducer element to the signals from the four point sources and the PCC
between every two responses. d Expression of the four responses using linear
combinations (coefficients visualized with bars) of three temporal singular
functions shown as red, gray, and blue curves, respectively, based on SVD. e-f
Independent responses (e) of a transducer element to 50 point sources (index
m' = 1,2, ...,50) with decreasing distances to the element, and the temporally-
shifted form (f), which aligns the nonzero signals in time. g White-noise

(11)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, 2020

responses of the same size as those in e and f. h-i Normalized singular values
and proportions of the variances unexplained, respectively, in the SVDs of the
signalsine, f, and g.

We visualize the signals detected by a transducer element by
picking four point sources, labeled as A, B, C, and D,
respectively, in the local coordinate system of the n-th
transducer element (Fig. 1b), with points A, D, and the element
center ;, on the same line. The element’s responses to the
signals from the point sources are shown in Fig. 1¢. We let ps g
denote the Pearson correlation coefficient (PCC) between the
responses corresponding to A and B. A direct implementation
of the forward operator based on Eq. (6) is computationally
intensive. Although p,p = 1, due to the effects of SIR, pa g,
Pac, and pg ¢ are less than 1, indicating the signals from points
A, B, and C are not shift-invariant; thus, an efficient temporal
convolution with one kernel function cannot yield the detected
signals accurately.

To accelerate the forward operator, we decouple the spatial
and temporal dimensions of Ryq(ryy,t) using SVD while
keeping only the dominant components:

K
i (rg, ©) = Z Pt () () - (16)
k=1
Here, Ay 1 (111) and 1, denote the k-th spatial singular function
and the k-th temporal singular function, respectively; and we
use the first K terms to approximate the whole series.
Combining Egs. (9), (15), and (16), we obtain

~ r-r,
h,(r',t) = h, (r’, t— u>

lIr' = n|l

= Elcl (' —r)A, t—

K

St - romn - 250)

Substltutmg Eq. (17) into Eq. (6), we obtain

P 0= fvp"(r ); Rree (1 = 1) AR )T (t =l r””) dr’
K

=Zm@mfmu%MMV—MMwQ—M{E%uu
14

k=1

(17)

n=12..,N,t=>0. (18)
As shown in this equation, we split the temporal variable from
the spatial integrals, which allows for a fast implementation of
the forward operator.

We apply Eq. (16) with K = 3 to the responses in Fig. 1¢ for
an initial demonstration. The three temporal singular functions
N1 (t), n,(t), n3(t) are shown as red, gray, and blue curves,
respectively, in Fig. 1d, and the values of spatial singular
functions are visualized as bars. Then we explain the necessity
of temporal shifting for alignment, described in Egs. (8) and
(9), for SVD. We select 50 point sources with decreasing
distances to a transducer element and visualize the element’s
independent responses to them in Fig. le. The temporally-
shifted form of these responses based on Eq. (9) is shown in
Fig. 1f. We also add white-noise responses with the same size
for comparison, as shown in Fig. 1g. Performing SVD to the
three sets of responses, we observe different compression
efficiencies from the perspectives of normalized singular value
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(Fig. 1h) and proportion of the variance (Fig. 1i). In both
figures, we see that the compression efficiency of the original
responses is similar to that of the white-noise responses,
whereas the efficiency for the temporally-shifted responses is
significantly higher (necessary for the compression).

[1l. POINT SOURCE RESPONSE OF AN ULTRASONIC
TRANSDUCER WITH A FLAT RECTANGULAR DETECTION
SURFACE

The fast forward operator can be configured for a transducer
with any detection surface. Here, we only discuss an ultrasonic
transducer with a flat rectangular detection surface with a length
a of 0.7 mm and a width b of 0.6 mm, which is used in our 3D
imaging system [36]. We see from Eqgs. (6) and (15) that the
forward operator is based on the point source response
Ry (1i, ) in the local coordinates. The response is determined
by the first derivative of EIR (h.(t)) and the realigned SIR
(hg1a (g, £)) in the local coordinates. In general, we can
measure ¢ (1j., t) experimentally. In this research, for an
ultrasonic transducer with a flat rectangular detection surface,
we calculate hyg(r,,t) efficiently using the far-field
approximation of hg,¢ (1iy, t) [10]. From a special case of this
approximation, we derive a method to measure h((t)
experimentally.

In the first step of obtaining Ay (1, t), we introduce the
calculation of Ay 1y, t) based on the far-field approximation
of 11 (T, t). In this research, the image domain is within the
far-field regions of all transducer elements. Using the far-field
approximation, we express the SIR in the frequency domain as

[10]
ab exp (—j27rf w)
Fo(hen(r',0) () ~ ——3 ey
| a|(r'—rn)f<£|>_ ( b|(r'—rn)9$|>
sinc\nf ———mm|sinc\njf ———mmm | .. 19
(f e =, == ) 9

Here, F, denotes the temporal Fourier transform (FT), and j
denotes the imaginary unit. Combining Eqs. (14) and (19), we
apply the temporal FT to A (i, t) and obtain

c

= exp (jan ”'”:—”') Fy (hen(',0)) ()
al(r’—rn)ﬁﬂ) : ( bl(r’—rn)?ﬂ)
sinc| nf ————F——

cllr’ = x| clir’ = x|

ab
 2mc|lr’ — |l

sinc (nf
ab alx bly,
= ————=sinc (nf | }Cll > sinc (nf Iyl,d | > (20)
2mc|rig| clIriall clIriall

Here, we wuse identities 1y =@ —r)A, =@ —
1) (&5, 90, 2) = (e Yiew Zia) and [IF' — x| = lInyll, and
I}, must not be the origin in the local coordinates. Substituting
Eq. (20) into the temporal FT of Eq. (13), we obtain

~ 1 ~
Fy (hlcl(rl’cl' t)) = mFt(h'e(t))(f)Ft (hs,lcl(l'fcl' t)) 6]
~ Ft(hé(t))(f) sinc (nf alxjy] > sinc (nf byl > . 21)

4”Cz||r1'c1|| C”rl'cl” C”rl'cl”
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Applying the temporal inverse FT to Eq. (21), we obtain
ha (T, ) =

F1 Fr(hé(t))(f)sinc< alx{c1|>. (

nf sinc
‘ 4me? ||| cIrall

In the second step of obtaining A, (1, t), we derive a
method to measure h.(t) by analyzing a special case of Eq.
(22). We constrain the location 1y, on the axis of the transducer
by letting rj; = (0,0, z;), which simplifies Eq. (22) to

ﬂfblyl,d|> ) (22)
i

] F(RO)P\ _ h®
R (i, t) ~ F1 [ =2 =—2F : 23
lcl( Icl ) t ( 47TC2|Z1’C1| 47TC2|Z{CI| ( )
Solving for h.(t) from Eq. (23), we obtain
he(t) = 4Amc?|zig |l (g, t) = 4mc?|zig | h, (1, £)
2|, / -1 |lec1|
= 47TC |Z1c1|hn (0,0, ZlC])Al‘n + I‘n, t+ T (24)

Here, we use the identity r' = 1j4A;! + 1, = (0,0, 2/ )A;! +
r,,. In practice, we repeat the measurement of the right-hand
side of Eq. (24) and use the average to represent h (t).

In summary, we measure h;(t) experimentally on the basis
of Eq. (24) and substitute the measurement into Eq. (22) to
obtain Ay (riy, t). Further, we perform SVD to hyq(riy,t)
according to Eq. (16) and obtain singular functions A, (ri)
and n, (t), k = 1,2, ..., K. We use these functions in Eq. (18) to
implement the fast forward operator.

IV. DISCRETIZATION OF THE FORWARD OPERATOR

We express the forward operator in two different forms in
Eqgs. (6) and (18), respectively. First, we discretize the forward
operator implemented in Eq. (6). In the temporal domain, we
choose points of interest t; =t; + (I — D1, =1.2,...,L,
where t, is the initial time, 7 is the sampling step size, and L is
the number of time points. Then we discretize the temporal FT
of hy(t) as Ft(hg(t))l, ~ F(hp"),l' =1,2,...,L, where we
define  hy = he(t)), Fi(he(®), = F(he@®)(fr), LU €
{1,2, ..., L}, and let F, represent the discrete FT with respect to
. The temporal frequencies fr,l' =1,2,...,L are selected

according to the requirement of the discrete FT. We further
denote the my -t location in the local coordinates as Iy, , =

! ! ! 7 _
(xlcl,mlcy YIcl,mlcV Zlcl,mlcl) and hlcl,mlcl,l -
X ) .
hlcl(rlcllmlcl, tl),mlcl =1,2,..., M}y, where M, is the number

of locations of interest in the local coordinates. Thus, we
discretize Eq. (22) as

define

~ 1

B e
tebmet 4-T’:CZ”rl,(:l,‘n'l[c] ”

F (D"
1 ’ ’
F e (nfl, e |> e (m lyicima| ) 0}
C”rlcl,mlcl ” C”rlcl,mlcl ”
mye = 1,2,...,M1C1,l = 1,2,...,L. (25)

Further, we discretize the point source response h,(r',t) as
hpmi = hy(Op, t),n=12,..,Nm=12,. .M, =

1,2, ..., L. Here, M is the number of voxels (source points) in the
image domain. On the basis of the relation h,(r,,,t;) =

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 29,2025 at 17:01:36 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMI.2025.3612437

~ I _ ~ o
h, (I‘,'n, b= ”rmc_rn”) = hyg ((r1;1 —L)A, L — ”rmc rn”>' we

obtain the values of h,, ,,, ; through spatiotemporal interpolation
of the values of fllcl,mld,l. Denoting p,,; = p(r,, t;) and py ., =
po (1), we discretize Eq. (6) as

M

plow = Z VmhnmiPom,n =1,2,..,N,l =12,..,L. (26)
m=1
Here, pS'9% represents an approximation of p,; using this
relatively slow forward operator, and v, represents the volume
of the m-th voxel. In practice, due to the finite duration of every
point source response (shown in Fig. 1c, e, and f), given a
combination of m and n, we need to calculate only for [ in a
range of length L' < L. Here, L' is the effective length for
nonzero values in the discretized point source responses, and
the computational complexity of the discrete forward operator
in Eq. (26) is O(NML").
Next, we discretize the forward operator to a form with lower
computational complexity from Eq. (18). We denote

Mciem = M (Temy) and M = nie(t), k=12, .., K,
mg=12,..,Mqy, | =1,2,..,L. After obtaining the array
Elcl,mlcl.l through Eq. (25), we estimate i_llcl‘k,mld and 1y,
through SVD:

K
h]Cl,mlcl,l =~ Z thl,k,mlclrlk,l )]
k=1

myq = 1,2,...,Mlcl,l = 1,2,...,L. (27)
We denote Ryeypm = Elcl,k((r,’n — rn)An), which is obtained
from the values of Elcl,k,mld through spatial interpolation.

!
r —n . .
Moreover, we express & (t - M) in the discrete form as

1 Ity — rall Ity — Tl
p <<t1n,m+1 B — Sty T 7 "l Oty mt1 |

n=12.,Nm=12,...M,l=12,..,L
Here, 1, denotes the temporal index such that ¢, <

lIrm—ra] < {1, m+1> and we use the Kronecker delta function
0,l+10,
S = {1 =1, (29)
We discretize the forward operator in Eq. (18) as
sfast
Pni =

(e [ (s -1 rnu) -
kZlnk,l *1 mZﬂ UmMclknmPom T (”rr,n — 1l ~ > ’
T\ 7 bam | Ollamtt
n=12.,Nl1=12,..,L. (30)
Here, ﬁ,ffj‘ft represents an approximation of p,,; using the fast
forward operator, and #*; denotes the discrete convolution with
respect to l. In practice, we choose a value of L so that log, L is
an integer, and we implement the discrete convolution using the
temporal FFT. Thus, the computational complexity of the
discrete forward operator in Eq. (30) is O(NMK) +
O(N(Llog,L)K).
The big O notations for both operators mean that there exist
constants B4, 8,, and S5 (all independent from N, M, L, L', and
K) such that the computations based on the slow and fast

(28)
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forward operators, respectively, can be done in times less than
BiNML and S,NMK + B;N(Llog,L)K. The slow forward
operator consists of only spatial integration; whereas, the fast
forward operator consists of two layers of operations, and the
terms S, NMK and ;N (Llog,L)K are responsible for the inner
layer spatial integration with Elcl,k,n,m and the outer layer
temporal convolution with 7;, ;, respectively.

V. AHYBRID METHOD FOR IMAGE RECONSTRUCTION FROM
SPARSELY SAMPLED RAW DATA AND A PRIOR IMAGE

We first acquire signals from an object with transducers at
enough locations (N, dense sampling). Then we continuously
acquire multiple sets of signals from the object with transducers
at a smaller number of locations (N', sparse sampling) for fast
functional imaging. We assume that the object does not move
as a whole during functional imaging.

For image reconstruction, we denote the densely sampled
signals and a set of sparsely sampled signals as Py;.x; and
P/ 1q1- Tespectively. We first obtain an image Py, from the
densely sampled signals Py.x; by solving the regularized
optimization problem

Pomx1 =
. 2
argmin (Vc”HNLxMPo,Mx1 - ﬁNLx1|| + /1|P0,M><1 |TV) 3B
Po.mx1ERM po mx120
using a fast iterative shrinkage-thresholding algorithm (FISTA)
with a constant step size [37]. Here, y, represents the system-
specific measurement calibration factor, meaning y.Pyix; 18
the reading of the data acquisition system; Hy; ), is the dense-
sampling system matrix; A means the regularization parameter;

and |p0,M><1|TV denotes Pgyx1’s total variation (TV) norm,
defined as

2
(po,ml,mz,m3 - po,ml—l,mz,m3> +
1]m,l

|pO,M><1|TV = Z

2
(po,ml,mz,m3 _po,ml,mz—l,m3> + (32)

2smy=M; Um,2

2smy<M, _ 2

2sm3<Ms (po,ml,mz,m3 po’m11mz‘m3—1>
\ vm,3

In this definition, v, 1, ¥y, », and vy, 5 represent the voxel sizes
along the x-axis, y-axis, and z-axis, respectively; M;, M,, and
M5 (M = M;M,M,) denote the number of voxels in the first,
second, and third dimensions, respectively; and we reshape the
column vector Pg 1 to a 3D array Po u, xm,xm, With elements
Po,mymyms 0 €xpress 3D information, m; = 1,2, ..., My, m, =
1,2,...,My,m; =1,2,..., M;.

To obtain an image from Py, ,, directly, we can use Py, .,
and the sparse-sampling system matrix Hy, ., to replace
Prnix: and Hy .y, respectively, in Eq. (31) and solve the
problem

ﬁg,Mxl =
argmin (Ve MBS mxs = Byl + APSacalyy ) (33)
Pomx1ERM S 11120 ’ ‘ ™
using FISTA with a constant step size [37]. However, the
nonlinearity introduced by the nonnegativity constraint and TV
regularization may disrupt the functional signals. To maintain
the linearity under sparse sampling, we treat Pg yx1 as a prior
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image and apply a smooth modulation to it to extract the
dominant sources of aliasing artifacts by solving the
optimization problem
Hom'x1 =

argmin , ||HIS(/’L><M (ﬁO,Mxl O (UMXM’HO,M’xl)) - ﬁf\/’bq
Mo 51 ERM
using FISTA without regularization. Here, W1y, is a
modulation image in the form of a column vector of size M’ =
M{M;M; (K M), the symbol (© denotes the element-wise
product, and U,,,,,’ is an upsampling operator transferring
Mo m'x1 to a smooth modulation image in the column-vector
form of size M. To implement U,,,,,’, we reshape the vector
Wom'x1 into a 3D array Mo ut! x x> apply trilinear

2
RER

interpolation to the 3D array to obtain Mg u, xm,xms» and flatten
it to obtain U7 o y7x1- The array Moy, xm,xm, 1S @ smooth
array determined only by M’ independent values. Thus, the
expression Poyx1 O (UMX M’u'O,M’Xl) represents a smooth
modulation of the prior image Pgyxi. By solving the
optimization problem in Eq. (34) we obtain fi,y, and
represent the dominant sources causing aliasing artifacts by
Poux1 © (UMX M’ﬁO,M'X1)7 which correspond to the dominant

signals  causing aliasing artifacts Hy/, (ﬁO,Mxl ©

(U B, erl)). It needs to be noted that the implementation

of the forward operator based on Eq. (30) allows for efficient
slicing of the system matrix, such as the matrix Hy/, ., a
slicing with respect to transducer element indices. Also, for a
given set of parameters in FISTA, the solution to Eq. (34),

-~ . =S
Mo v'x1> depends linearly on Py, . ..
Bria By U b = 1.2 Ly :

Densely sampled prior image:
. (Vc”HNLxMPD,Mxl - IA’N1_><1||2 + Alpﬁ,MxllTV)

Sparse functional data:
ﬁfw’Ln < ﬁfv’l_n(lf)

* a

Smooth modulation image: .
< . ~ N 2 <= f
Hom'xy = argmin ”HISV’LxM (PO,Mx1 S} (UMxM’llo,M'xl)) — Py “ ¢ +]
€ER/

o.M’ x1
Dense forward solution: Sparse forward solution:
Hypxm (ﬁo,Mxl O (UMxM’ﬁo,M’n)) Hy (ﬁo,Mn o (UMxM’ﬁo,M'xl))

v ¥

Modulated UBP Residual UBP Residual data:
image: B image: p} Phriscr = Hyrpsan (Posrxs © (Uppsarr ot

argmin

Pomx1 =
Pox1ERM poprx1>

o PR — —r L Py al
[ Hybrid image: p} = p + p?, | 6 () < b

Functional analysis based on

PR, =12, .., L¢
Fig. 2 Workflow of the hybrid method for image reconstruction from sparsely
sampled raw data and a prior image.

Then, we apply the dense-sampling system matrix Hy; s to
Poux1 © (UMX M’ij'O,M'Xl) to simulate the densely sampled

signals Hy; «y (ﬁo,Mx1 © (UMxMrﬁO,erl)), from which we
use the universal back-projection (UBP) method [38] to
reconstruct an image, denoted as Py’ (modulated UBP image).
We further remove the aliasing artifacts caused by signals from
Poux1 © (UMXMrﬁO‘erl) by subtracting these signals from
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obtain the residual signals

Pyiisa 1O Prrisi —
H (ﬁo‘Mxl o (UMXM,aO,M,m)) and using them with the
UBP method to reconstruct an image, denoted as pg (residual
UBP image). Due to the linearity of the UBP method, both
images Py’ and Pp are linearly dependent on fi, 7., and thus
on Pyr,.,. We combine these two images to obtain the final
image

o = P5' +Po (35)
for Py, .- We summarize the workflow of the hybrid method
in Fig. 2. We repeat the process for other sets of sparsely
sampled raw data to obtain the images for further functional
signal extraction.

Note that, an accurate reconstruction using UBP requires
specific transducer array geometries, e.g., planar, spherical, and
cylindrical surfaces [38], and artifacts occur when a
hemispherical array is used in this study. However, these
artifacts are negligible compared with those caused by sparse
sampling, and the linearity of UBP is critical for the functional

imaging discussed here. For simplicity, we use UBP in the
hybrid method.

VI. CORRELATION-BASED FUNCTIONAL SIGNAL
EXTRACTION

Given a set of reconstructed images Py, [=1,2,...Ls in
functional imaging, we propose a method to extract functional
signals from them through regularized temporal correlation

with a functional signal profile. To explain the process, we
suma;
i J
define suma; =Z]._ a;, meana; = -——, and norma; =
FR j=1%p HEAR Y ] e

21:1 a]-2 for a series of numbers a;,j =1.2,..,]. We assume
that the functional signal has a profile ag,[=1,2,....Lg,

normalized to dg = (af‘lf - mtle,an amé> (n(l),l;m (“f,zg’ -
f f

mean a; z§>> . The m-th voxel has a value of P i, in the -
U ’ o

th image P, ;.. We can quantify the functional amplitude at the
m-th voxel through the PCC between Py, and agy,:

Sl}fm af,lf (pO,lf,‘m - mle,an pO,l%,m)
f

PCC(Potgms tr1r) =

noltf‘m (ﬁo,zf,m - m(la;an ﬁo,zg,m>
m=12,..,M, (36)
which is not robust for very-low-amplitude regions. To improve

the robustness, we add a regularization term to the denominator
and obtain the regularized PCC (PCCR):
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PCCR;, (Potgm: t1,) =
lg

sum

" df,lf (pO,lf,m - mle,an pO,l;,m)
f

norm (po,zf.m — mean po,z;,m>
f

+A¢ mean nollgm (Po,lf,m’ — mean Po,zli,m’)
f

m=12,.., M. (37)
A 3D functional image is formed by assigning the regularized
correlation to each voxel.

The assumed functional signal profile ag; is directly
available in the numerical simulations (Eq. (43)). For mouse
brain functional imaging in vivo, we obtain ag; through an
initial UBP reconstruction, which is clarified in the section on
in vivo study.

VII. EFFICIENCY AND ACCURACY OF THE FAST FORWARD
OPERATOR

In this study, we used the 3D PACT system reported
previously by Lin et al. [36], which consists of four 256-
element arc transducer arrays (central frequency of 2.25 MHz
and one-way bandwidth of 98%), and we assumed a
homogeneous medium. In numerical simulations, we
downsized each arc to 128 elements.

To quantify the efficiency and accuracy of the fast forward
operator based on Eq. (30), we performed numerical
simulations by placing a numerical phantom of size 1 X 1 X
1 cm?® (Fig. 3a, with voxel values of 1 inside the solid and 0
elsewhere) in four image subdomains of the system (D,, D, D,
and D, shown in Fig. 3b). The virtual 2D array formed by the
rotation of the four arc arrays is marked by blue arcs and the
rotation of the four subdomains around the same axis covers a
domain (marked by black-dotted circles and arcs) enclosing all
the image domains discussed in this study. We also
implemented the slow forward operator according to Eq. (26)
for comparison.

We first quantified the efficiency of the fast forward operator
by performing forward simulations with the numerical phantom
in the subdomain D, using both operators with parameters M =
50 X 50 X 50 (voxel size of 0.2x0.2X0.2mm3), N =
396 x 128 (the four-arc array rotated for 99 locations and each
arc downsized to 128 elements), L = 4096, L' = 151,and K =
3. We ran the single-thread-CPU version (implemented in C++)
of each operator 36 times on a server with Ubuntu 20.04.6 LTS
and Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. Denoting
the computation times of both operators as tgs and tgow,
respectively, we obtained mean(tg,s) = 6.3 min, std(tg,g) =
0.4 min, mean(tg,,) = 267 min, and std(tge,) = 19 min
for the 36 simulations and compared the values in Fig. 3c.
Further, we performed a Welch’s t-test between 42t and
tsow> Showing an insignificant difference (p-value = 0.59).
Thus, the fast forward operator with K = 3 has approximately
42 times the speed of the slow forward operator. As K varies,
the computation cost of the fast forward operator, O (NMK) +
O(N(Llog,L)K), is approximately proportional to K.
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Note that the single-thread-CPU versions of the slow and fast
forward operators were used here for a fair comparison of the
operators’ computation costs. In both operators, most of the
computations are explicit matrix-vector multiplications and can
be easily parallelized. Thus, for further image reconstructions,
we implemented both operators in C++ and CUDA and used an
NVIDIA A100 GPU for hardware acceleration. For the forward
simulation of the subdomain D;, GPU acceleration reduced
computation times of the fast and slow operators from 6.3 min
and 267 min to 0.31 min and 10.2 min, respectively.

p-value = 0.59

a c
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Fig. 3 Efficiency and accuracy of the fast forward operator. a A numerical
phantom formed by three rectangular cuboids (each of size 2.6 X 2.6 X
10 mm?) intersecting at their centers. Voxel values are 1 inside the phantom
and O outside. Three lines (L1, L2, and L3) are picked for image-domain
comparisons in Fig. 8 of Appendix A. b A virtual 2D array (blue-solid arcs),
four subdomains of size 1 X 1 X 1 cm® (D;, D,, D3, and D,), and the domain
occupied by rotations of the four subdomains around the array axis (black-
dotted circles and arcs). ¢ Computation times (t¢,se and tg)oy) of the fast and
slow forward operators, respectively, for the forward simulations with the
numerical phantom in D; (36 repetitions). d Relative error of the fast forward
operator for subdomains D, D,, D3, and D,, and for K = 1,2,3,4,5. e Relative
error of the reconstructed image for the numerical phantom placed in
subdomains Dy, D,, D3, and D,, and for K = 1,2,3,4,5.

The accuracy of the fast forward operator is dependent on the
value of K and we quantified this dependency by calculating the
relative errors of the system matrix and the reconstructed
image. For the numerical phantom (shown in Fig. 3a) placed in

the subdomain D;, we denote the ground truth image as po p,,
the ground-truth system matrix as Hf}i"w (elements defined in
Eq. (26)), and the system matrix compressed to the K-th
singular function as Hgis,t( (elements defined in Eq. (30)). Next,
we define the system-matrix relative error as

Hfa'st _ Hslpw
S(HESY) = 5 — Ho 1, (38)
=,
Here, we use the spectral norm of a matrix H,
[IHIl, = v/ Amax(HTH), (39)

defined as the square root of the largest eigenvalue A, of the
symmetric matrix HTH, and HT means the transpose of H.
Then, we define the reconstructed-image relative error as

”ﬁon« - p0D~||
§(Pop; k) =—F—7—
Proue) =
with the image P p, x reconstructed by solving the optimization
problem

, (40)

2
= — i fast slow
Pop;x = argmin ”HDi,KpO — Hj, pO,Di”

PoERM ,py=0

(41)
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using FISTA with a nonnegativity constraint of the image.
For subdomains D,, D,, D5, and D,, and for K = 1,2,3,4,5,
we performed power iterations to estimate each largest

eigenvalue and calculated & (HE;"‘;,E), and we performed 256

FISTA iterations to obtain P p, x (intermediate results for K =
3 shown in Fig. 8 of Appendix A) and calculated § (ﬁo,ni,z()-
We compare the values of § (Hff‘ls,%) and & (ﬁo,ni,x) in Fig. 3d
and e, respectively. When K = 3, the system-matrix relative
error is below or very close to 1% for all subregions, and the
reconstructed-image relative error is below 1% for all
subregions. On the one hand, by changing K from 3 to 4, we
observed negligible variations in the reconstructed structural
and functional images in this study. On the other hand,
changing K from 3 to 2 significantly increases the relative
errors, e.g., a reconstructed-image relative error of 6.9% for D,
which has a risk of affecting certain regions of the image and
compromising functional imaging. To achieve both high
efficiency and high accuracy of the forward operator, we used
K = 3 in this study.

Note that, for high interpretability of the intermediate results
(Fig. 8), we used a simple numerical phantom for simulations
in subdomains D;, D,, D;, and D,. More realistically, we
designed two complex numerical phantoms with M = 300 X
300 x 150 (voxel size of 0.2 X 0.2 X 0.2 mm?3, shown in Fig.
9a and b, respectively, in Appendix B), performed simulations
for both phantoms in a domain D (shown in Fig. 9¢), and
calculated the image relative error & (f)0, D,3) for the fast forward
operator with K = 3. After 1280 FISTA iterations, the image
relative error is 0.96% for phantom 1 and 0.78% for phantom 2
(both below 1%), which further demonstrates the high accuracy
of the fast forward operator.

VIIl.  NUMERICAL SIMULATION OF THE HYBRID METHOD FOR
IMAGE RECONSTRUCTION

We demonstrated the performance of the hybrid method by
using it to reconstruct images from signals of a numerical
phantom acquired by virtual arrays with different numbers of
arcs: 4N, = 76,40, 28,20, 16,12. Here N, is the number of
rotating locations of the four-arc array (with 128 transducer
elements in each arc) in a virtual array. Images of the numerical
phantom reconstructed using UBP, the regularized iterative
method (Eq. (33)), and the hybrid method (Eq. (35) with a
prior image obtained by performing a smooth modulation to the
numerical phantom) are shown in the first three columns in Fig.
4a. The used virtual arrays are shown as blue arcs with red
boundaries in the fourth column in Fig. 4a. We see that, as
4N, decreases from 76 to 12, the artifacts in the images
reconstructed using UBP become more abundant. The
regularized iterative method mitigates the relatively weak
artifacts in all images but failed to suppress the strong artifacts
such as in the images with 4N,,. = 16, 12. In contrast, with the
help of the prior image, the hybrid method significantly
mitigates the artifacts. Quantitatively, for each method, we
calculate the structural similarity index measures (SSIMs)
between the images with 4N;,. = 40,28,20,16,12 and that
with 4N, = 76, and compare the values in Fig. 4b. The hybrid
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method performs the best in mitigating artifacts and
maintaining true features.

Regularized
iterative method

a UBP Hybrid method  Detection geometry

ol T 3

Image size: 18x24x16 mm

Normalized PA amplitude

Regularized
iterative method

b

(1]

= P T T r UBP Hybrid method

Bl Regularized iterative method
EE3 Hybrid method

Image of

Image of

SSIM
phantom sum phantom 2 phantom 1

Image of

Linearity test
residual

MAP along z is 0 [ |1

Normalized PA amplitude

Fig. 4 UBP, regularized iterative method, and the proposed hybrid method for
sparse-sampling imaging, and their linearity tests. a Images reconstructed by
the three methods (first three columns) from signals detected at sparsely
distributed elements (red-bounded blue curves in the fourth column) for
4Nyoc = 76,40,28,20,16,12. Examples of maintained features and
suppressed artifacts are indicated by white-solid and white-dotted arrows,
respectively. b SSIMs between the reconstructed images with 4N, =
40,28, 20,16,12 and those with 4N,,. = 76 for the three methods. ¢ Linearity
tests of the three methods for 4N, = 12. Scale bar, 5 mm.

Additionally, we tested the linearity of each method by
reconstructing two numerical phantoms and their summation.

MAPs of the reconstructed images and the linearity test
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residuals (image of the summation subtracted by images of the
two phantoms) of the three methods with 4N,. = 12 are shown
in Fig. 4c. The test validated that UBP and the hybrid method
are linear, but the regularized iterative method is nonlinear. In
the hybrid method, the prior image accuracy does not affect the
linearity, but an inaccurate prior image may compromise the
hybrid method’s effectiveness in mitigating artifacts.

Due to the requirement of a prior image, the hybrid method’s
practical value mainly lies in fast functional imaging with
sparse sampling, which is discussed in the next section.

IX. NUMERICAL SIMULATION OF THE HYBRID METHOD FOR
FAST FUNCTIONAL IMAGING

We obtained numerical phantoms for functional imaging
using
Pois = b1 Pob + Aty Pos =12, .. Ly (42)
Here, P is the l¢-th numerical phantom; p,, (Fig. 5a, voxel
size 0.1 X 0.1 x 0.1 mm?) is the background phantom obtained
in imaging with dense sampling and p,¢ (Fig. 5b) is the
functional phantom obtained by smoothing, downsampling, and
zero padding of P y,; @y, i and a are modulation factors of the
two phantoms, respectively; and L¢ is the number of numerical
phantoms for functional imaging. The way p,y is obtained
guarantees that the mean value of nonzero voxels in pg
approximately equals that in p, . For simulations in this study,
we used a virtual array formed by 12 arc arrays (Fig. 5c¢), let
L¢ =36, and let ay,; ~N(1,0.1), l=1,2,...,L¢ (Fig. 5d), an
amplitude similar to the image relative difference we observed

in mouse brain functional imaging. Also, we let
A 6n(lf—1)

g, If = ? smL—f
where Ay is the functional amplitude. The values of ag;. with

Af = 0.18,0.06,0.02 are shown in Fig. Se and used in the
simulatios.

+ 1) =12, 0 Ly, (43)
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Fig. 5 Numerical phantoms for functional imaging. a-b The background and
functional numerical phantoms, respectively, for functional imaging
simulation. ¢ A virtual array formed by 12 arc arrays, shown as arcs with red
boundaries. d-e Modulation factors of the background and functional phantoms,
respectively.
We performed forward simulations (4N;,. = 12), image
reconstructions (UBP, the regularized iterative method in Eq.
(33), and the hybrid method in Eq. (35)), and functional signal

extractions (Eq. (37)) with different values of A The
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functional images extracted from four sets of images (ground-
truth images and images reconstructed with three methods)
using the regularized-correlation-based method with A; = 1.6
are shown in Fig. 6 and Supplementary Video 1. We observe
that artifacts in the UBP-reconstructed images cause artifacts in
the functional images, the regularized iterative method
mitigates artifacts in functional images but also compromises
the true functional region, and the proposed hybrid has the best
performance in functional imaging with sparse sampling. The

results with other values of A also support this observation.

Regularized
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Fig. 6 Functional images extracted using the regularized-correlation-based
method with A; = 1.6 from ground-truth images and images reconstructed with
UBP, the regularized iterative method, and the hybrid method for Af =
0.18,0.06,0.02. The first three rows show both the 3D functional and
background images, and the last three rows show the MAPs of the functional
images along the z-axis. In the first and fourth rows, the true functional regions
and examples of false positive regions are indicated by white-solid and white-
dotted arrows, respectively.

It needs to be noted that, in the hybrid method, both the
modulated UBP image Py’ and the residual UBP image py are
linearly dependent on the sparsely sampled signals Py, ,. To
visualize the functional signals in both Py and pg, we apply the
regularized-correlation-based method with A; = 1.6 to both sets
of reconstructed images and compare them in Fig. 10 (
Appendix C) and Supplementary Video 2. We notice
significant functional signals in both p§' and py. On the one
hand, functional regions obtained from pg' (column 3 in Fig.
10) are much smaller than those from the ground truth images
(column 1) and the hybrid images (column 2). In fact,
reconstruction of the modulated UBP image pg’ is constrained
by the prior image, which may break function signals in certain
regions. On the other hand, functional images obtained from Py,
(column 4 in Fig. 10) show an elevated background after
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normalization, which results in an enlarged true functional
region and more false-positive regions. Thus, only the
modulated UBP image Pg* or the residual UBP image Py, is not
sufficient in providing functional signals, and it is necessary to
combine them (P} = P + Py) for robust functional imaging.

X. MOUSE BRAIN FUNCTIONAL IMAGING IN VIVO

Finally, we applied UBP, the regularized iterative method,
and the hybrid method to mouse brain functional imaging in
vivo using the four-arc system. We first obtained a prior image
of a mouse brain through dense sampling (4N, = 396), then
electrically stimulated its right front paw and continuously
acquired signals from the mouse brain through sparse sampling
4N, = 76, 2 s per image).

a 4Njoc=40

Sparse sampling,
UBP

Dense sampling,
UBP

R

4Njoc=20 4N|oc=12

Sparse sampling,
regularized
iterative method

Sparse sampling,
hybrid method

O AN

Normalized PA amplitude

02T T 1 Image size:

Normalized functional amplitude  25x25x20 mm3
4N)oc=40 4N)gc=20 4Njgc=12

c

Electrical
stimulation

uBP

Regularized
iterative method

120 s

On On On On On
EEEEN
Off Off Off Off Off

Hybrid method

Fig. 7 Sparse-sampling mouse brain functional imaging in vivo. a A densely
sampled image of a mouse brain reconstructed by UBP (left column, 4N,y =
396) and sparsely sampled images of the mouse brain reconstructed using UBP
(first row), the regularized iterative method (second row), and the hybrid
method (third row), respectively, for 4N, = 40,20,12. Examples of
suppressed artifacts and maintained features are indicated by white-dotted and
white-solid arrows, respectively. b Electrical stimulation to the mouse’s right
front paw: five cycles, each with 12-s stimulation on and 12-s off. ¢ Functional
images obtained from the images reconstructed using UBP (first row, A =
0.32), the regularized iterative method (second row, A = 0.08), and the hybrid
method (third row, A; = 0.32), respectively, for 4Ny, = 40,20, 12. The true
functional regions in all images are indicated by white-solid arrows, and
examples of false positive regions are indicated by white-dotted arrows.
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To obtain the functional signal profile ay; ., we first let it be a
sinusoidal profile synchronized with the paw stimulation
pattern and used it in the correlation-based method to obtain a
functional image from UBP reconstructed images with 4N, =
76. Then we identified a functional region from the functional
image by thresholding using 90% of its maximum voxel value,
calculated the mean value in this region for each UBP
reconstructed image, and assigned the mean values to
af_,f, lle,z, ,Lf.

We used subsets of the sparsely sampled signals (4N, =
40,20,12) to demonstrate the performance of the hybrid
method. For one set of sparsely sampled signals, the images
reconstructed using UBP, the regularized iterative method, and
the hybrid method for 4N,,. = 40, 20, 12 are shown in Fig. 7a.
We observe that the iterative method mitigates the artifacts
(e.g., those indicated by white-dotted arrows) but compromises
low-amplitude features (e.g., those indicated by white-solid
arrows for 4Nj,. = 20). In contrast, the hybrid method
maintains  low-amplitude features while substantially
mitigating the artifacts, resulting in images more similar to the
densely sampled image. Electrical stimulation of the mouse’s
right front paw occurred in five cycles, each with 12-s
stimulation on and 12-s off, as shown in Fig. 7b. We obtained
functional images from the images reconstructed through the
three methods for 4N, =40,20,12 wusing A=
0.02,0.08,0.32,1.28,5.12, and observed that, for UBP and the
hybrid method, A; = 0.32 was the best choice to maintain the
true functional region and suppress false positive regions. For
the regularized iterative method, 1; = 0.08 was the best choice.
We summarize the obtained functional images with the best
values of A in Fig. 7c¢ and Supplementary Video 3. Results
from UBP and the hybrid method match well for 4N;,. = 40.
The hybrid method is slightly (significantly) better than UBP
for 4N, = 20 (4N)y. = 12). Due to the violation of linearity,
the regularized iterative method compromises the true
functional region: leading to its shrinkage for 4N;,. = 40,20
and its decimation altogether for 4Nj,. = 12. In summary, the
proposed hybrid method enables fast functional imaging with
highly sparse sampling.

X|. CONCLUSIONS AND DISCUSSION

Here, we compressed the massive system in 3D PACT using
spatiotemporal SVD and temporal FFT. On the basis of the
compression, we proposed a hybrid method for fast functional
imaging by using a prior image to manipulate the system matrix
in sparse sampling. In both numerical simulations and mouse
brain functional imaging in vivo, the hybrid method
substantially mitigates artifacts in the reconstructed images and
reduces false positive regions in the functional image, and its
linearity is important for maintaining the true functional region.
Due to its high robustness, the method can accelerate or
enhance the performance of an existing system and reduce the
cost of a future system for functional imaging.

It needs to be noted that the availability of the functional
signal profile in this study allows us to use the highly robust
correlation-based method for voxel-wise functional signal
extraction. In studies where the profile is not available, other
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types of functional signal extraction methods (e.g., bandpass
filtering) can be used.

Although we demonstrated the system matrix compression
and manipulation methods using only PACT, they are
applicable to CT and MRI. System matrices in 3D PACT and
CT correspond to sphere [10] and line [6] integrals,
respectively, and the latter can be transformed using Grangeat’s
method [39] into plane integrals, which are locally equivalent
to sphere integrals. System matrices in 2D PACT and CT [5]
correspond to circle (reduced from a sphere) and line integrals,
respectively, which are locally equivalent. MRI is more
complex due to its high flexibility in k-space sampling. For
radial-sampling MRI [30], [40], the acquired signals can be
transformed to integrals on lines and planes, respectively, for
2D and 3D imaging using the Fourier slice theorem. For other
sampling patterns, further analysis may disclose proper
transformations to obtain integrals that are locally equivalent to
those in PACT.

APPENDIX A
RECONSTRUCTIONS OF THE NUMERICAL PHANTOM (SHOWN IN

FIG. 3A) WITH K = 3FOR D, D,, D5, AND D,
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Fig. 8 Reconstructions of the numerical phantom (shown in Fig. 3a) with K =
3 for Dy, D,, D3, and D,. al Relative error of the reconstructed image in the
subdomain D; with 1 to 256 FISTA iterations. a2—a4 Values on the lines L1,
L2, and L3 (shown in Fig. 3a), respectively, in the reconstructed images with
Niter = 1,4, 8,64,256. bl-b4, cl-c4, and d1-d4 The same analysis for
reconstructions in subdomains D,, D5, and D,, respectively.

APPENDIX B
SIMULATIONS FOR TWO COMPLEX NUMERICAL PHANTOMS
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Fig. 9 Simulations for two complex numerical phantoms. a-b Complex
numerical phantoms 1 and 2, respectively. ¢ A virtual 2D array (blue-solid arcs),
an image domain of size 6 X 6 X 3 cm® (D, red-solid box), and the black-dotted
circles and arcs from Fig. 3b. d-e Relative error of the reconstructed image (4
to 1280 FISTA iterations) for the two numerical phantoms, respectively.

APPENDIX C
FUNCTIONAL SIGNALS IN THE MODULATED UBP AND

RESIDUAL UBP IMAGES

Hybrid method:
Sho_
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Fig. 10 Functional images extracted using the regularized-correlation-based
method with A = 1.6 from ground-truth images, hybrid images (P} = P +
py), modulated UBP images (Pg'), and residual UBP images (pp) for A =
0.18,0.06, 0.02. Functional signals exist in both the modulated UBP images
and the residual UBP images, and the signals are complementary.
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