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After publishing the derivation from the classical Bloch equation to the quantum

von Neumann equation to the Schrödinger–Pauli equation for spin-12 , we proposed

renaming the Bloch equation to the Majorana–Bloch equation because Majorana’s

work predated Bloch’s in the presentation of the Bloch equation by 14 years. Here,

we first generalize our previous derivation to higher spins or angular momenta in

coherent pure states. Using the polynomial representation of the coherent-state

projector, we derive an invertible mapping from the Majorana–Bloch equation to the

von Neumann equation, establishing a one-to-one correspondence between these two

formalisms. Application of the Ehrenfest theorem also shows that expectation values

in these states reproduce the classical equation of motion as expected. Then, we

obtain arbitrary spin-s states by symmetrizing tensor products of spin-12 primitives,

in accordance with the Majorana construction or the Schur–Weyl duality.

Keywords: Bloch equation; Majorana–Bloch equation; von Neumann equation; spin coherent

state; coherent-state projector; density operator polynomial; higher-spin dynamics; angular

momentum; quantum–classical interface; quantum–classical correspondence

INTRODUCTION

Since our original publication on the derivation from the classical Bloch equation to the

quantum von Neumann equation to the Schrödinger–Pauli equation for spin-1
2
[1], we added

an appendix to detail the derivation of the Bloch or Majorana–Bloch equation [2]. Because

Majorana [3, 4] introduced the formulation in 1932, now known as the Bloch equation, prior
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FIG. 1. Illustration of the coordinates and variables.

to Bloch’s 1946 publication [5], we suggest renaming it the Majorana–Bloch equation [2].

Building on our previous work [1, 2, 6, 7], we extend the derivation from the Majorana–Bloch

equation to the von Neumann equation for arbitrary spins or angular momenta, with a

focus on the pure coherent-state manifold. The inverse derivation holds, whether or not

expectation values are taken. Further, we construct general spin states by symmetrizing

tensor products of spin-1
2
primitives [8], following the Majorana construction or the Schur–

Weyl duality [3, 4]. In what follows, the term “spin” is used to refer to either spin or orbital

angular momentum, as appropriate.

The work here is limited to Hamiltonians linear in spin, uniform in space, and time-

dependent. The bijection holds on the coherent-state manifold. Note that the mapping does

not extend to non-linear spin Hamiltonians.

DERIVATION FROM MAJORANA–BLOCH EQUATION TO VON NEUMANN

EQUATION FOR ARBITRARY SPIN IN COHERENT STATE

We begin with the classical Majorana–Bloch equation,

dScl

dt
= γ Scl ×B, (1)
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where Scl denotes the classical spin pseudovector, γ the gyromagnetic ratio, B the magnetic

flux density pseudovector, and t time. We define

n0 ≡
Scl

ℏ s
, (2)

where ℏ is the reduced Planck constant, s is the spin angular momentum quantum number,

and n0 is a unit vector (i.e., |n0| = 1, Fig. 1). Substitution gives

dn0

dt
= γ n0 ×B. (3)

Multiplying both sides from the right by the spin-s angular momentum operator pseudovector

Ŝ = (Ŝx, Ŝy, Ŝz) yields
d

dt

(
n0 · Ŝ

)
= γ

(
n0 ×B

)
· Ŝ. (4)

From the commutator identity valid for any vectors a, b ∈ R3 (see Appendix A),

(
a× b

)
· Ŝ =

1

iℏ
[
a · Ŝ, b · Ŝ

]
, (5)

which holds for any spin representation, we obtain

d

dt

(
n0 · Ŝ

)
=

γ

iℏ
[
n0 · Ŝ,B · Ŝ

]
. (6)

We define the Zeeman-type Hamiltonian

Ĥ ≡ − γ B · Ŝ (7)

and the dimensionless projection of Ŝ along n0

X̂n0 ≡
1

ℏ
n0 · Ŝ. (8)

Consequently, Eq. 6 becomes

dX̂n0

dt
=

1

iℏ
[Ĥ, X̂n0 ]. (9)

For the coherent state along n0, we find its density operator (see Appendix B),

ρn0 =
s−1∏

m′=−s

X̂n0 −m′Î

s−m′ , (10)
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where Î denotes the identity operator. We write Eq. (10) with fixed coefficients ak, which

depend only on s, as

ρn0 =
2s∑
k=0

akX̂
k
n0
, (11)

a polynomial of degree 2s. Then,

dρn0

dt
=

2s∑
k=0

ak
dX̂k

n0

dt
=

2s∑
k=0

ak

k−1∑
j=0

X̂j
n0

dX̂n0

dt
X̂k−1−j

n0
. (12)

Inserting (9) inside the sum produces

iℏ
dρn0

dt
=

2s∑
k=0

ak

k−1∑
j=0

X̂j
n0

[Ĥ, X̂n0 ] X̂
k−1−j
n0

. (13)

Using (see Appendix C)

k−1∑
j=0

X̂j
n0

[Ĥ, X̂n0 ] X̂
k−1−j
n0

= [Ĥ, X̂k
n0
], (14)

we obtain

iℏ
dρn0

dt
=

2s∑
k=0

ak [Ĥ, X̂k
n0
]. (15)

Substituting Eq. 11 yields

iℏ
dρn0

dt
= [Ĥ, ρn0 ], (16)

which is the space-independent von Neumann equation for arbitrary spin s or any angu-

lar momentum. For the pure coherent-state manifold, the derivation establishes an exact

correspondence from the classical (real-space) Majorana–Bloch dynamics to the quantum

(Hilbert-space) operator formalism.

Since each step is reversible on the coherent-state manifold for linear Zeeman dynamics,

the derivation is bijective. Hence, the von Neumann equation and the Majorana–Bloch

equation are equivalent descriptions of the same rigid-precession dynamics on this manifold.

The previous steps are reversible under the stated assumptions, which emphasizes that the

reversibility holds only within the conditions specified and does not imply general reversibility

beyond this setting.
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EXPECTATION-VALUE DERIVATION OF THE CLASSICAL

MAJORANA–BLOCH EQUATION IN COHERENT STATE

The von Neumann equation can also be recast into the Majorana–Bloch form by taking

expectation values. First, we prove that the expectation value of the quantum spin operator

Ŝ under the coherent-state density operator recovers the classical spin pseudovector:

Tr
(
ρn0 Ŝ

)
= Scl. (17)

Note that

Tr
(
ρn0 Ŝ

)
=

(
Tr

(
ρn0 Ŝx

)
, Tr

(
ρn0 Ŝy

)
, Tr

(
ρn0 Ŝz

))
. (18)

For brevity, we define

|n0⟩ ≡ |s⟩n0 . (19)

From Eq. B7 (see Appendix B), we obtain

Tr
(
ρn0 Ŝ

)
= ⟨n0| Ŝ |n0⟩. (20)

Eq. B2 gives (
n0 · Ŝ

)
|n0⟩ = ℏ s |n0⟩, (21)

leading to

⟨n0|
(
n0 · Ŝ

)
|n0⟩ = ℏ s. (22)

One can show that the perpendicular components vanish using ladder operators in the

local coordinates aligned with n0,

Ŝn0,± = Ŝn0,x ± i Ŝn0,y, Ŝn0,z ≡ n0 · Ŝ. (23)

For the highest-weight eigenstate |n0⟩,

Ŝn0,+ |n0⟩ = 0, ⟨n0| Ŝn0,− = 0. (24)

Hence,

⟨n0| Ŝn0,x |n0⟩ =
1

2
⟨n0|(Ŝn0,+ + Ŝn0,−)|n0⟩ = 0, (25)

⟨n0| Ŝn0,y |n0⟩ =
1

2i
⟨n0|(Ŝn0,+ − Ŝn0,−)|n0⟩ = 0. (26)
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Therefore, we reach

⟨n0| Ŝ |n0⟩ = ℏ sn0. (27)

Substituting Eq. 20 and n0 = Scl/(ℏ s) (Eq. 2), we have proven Eq. 17.

Second, using the von Neumann equation (Eq. 16) and the cyclic property of the trace,

we compute the time derivative:

d

dt
Tr

(
ρn0 Ŝ

)
=

1

iℏ
Tr

(
[Ĥ, ρn0 ] Ŝ

)
=

1

iℏ
Tr

(
ρn0 [Ŝ, Ĥ]

)
. (28)

Note that

[Ŝ, Ĥ] =
(
[Ŝx, Ĥ], [Ŝy, Ĥ], [Ŝz, Ĥ]

)
. (29)

Substituting the Hamiltonian Ĥ = −γB · Ŝ, using the commutator identity [Ŝ,B · Ŝ] =

−iℏ Ŝ ×B (see Appendix D), then inserting Eq. 17, we obtain

d

dt
Tr

(
ρn0 Ŝ

)
=

1

iℏ
Tr

(
ρn0 [Ŝ,−γB · Ŝ ]

)
= γ Tr

(
ρn0 Ŝ ×B

)
= γ Scl ×B. (30)

Finally, recognizing n0 = Scl/(ℏ s) (Eq. 2) gives

dn0

dt
= γ n0 ×B, (31)

which is the classical Majorana–Bloch equation (Eq. 3).

Alternatively, we may recover the classical Majorana–Bloch equation by applying the

Ehrenfest theorem,
d

dt
⟨Ô⟩ = 1

iℏ
⟨[Ô, Ĥ]⟩, (32)

to the spin operator, where the general operator Ô = Ŝ. Again, substituting the Hamiltonian

Ĥ = −γB · Ŝ and using the commutator identity [Ŝ,B · Ŝ ] = −iℏ Ŝ ×B (see Appendix

D), we obtain

d

dt
⟨Ŝ⟩ = 1

iℏ
⟨[Ŝ,−γB · Ŝ ]⟩ = γ ⟨ Ŝ ×B ⟩ = γ ⟨Ŝ⟩ ×B. (33)

Since ⟨Ŝ⟩ = ℏ sn0 (Eq. 27) for coherent states, we recover exactly the classical Majorana–

Bloch equation (Eq. 3). Here B is treated as a classical control field, so it commutes with

Ŝ and may be taken outside the trace expression. This identity would not hold if B were

promoted to an operator-valued field.
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APPLICABILITY TO COHERENT STATES

The derivation presented above applies to coherent pure states or statistical mixtures

thereof only. A coherent state is a particular family of pure states constructed to mimic

classical behavior as closely as quantum mechanics allows.

Any direction in space R3 may be specified by the polar angle θ ∈ [0, π] and the azimuthal

angle ϕ ∈ [0, 2π) as

n0(θ, ϕ) =
(
sin θ cosϕ, sin θ sinϕ, cos θ

)
. (34)

Solving the eigenvalue equation

ρn0 |n0(θ, ϕ)⟩ = |n0(θ, ϕ)⟩ (35)

yields the coherent-state ket in the |s,m⟩ basis with quantization along ẑ [9, 10],

|n0(θ, ϕ)⟩ =
+s∑

m=−s

√(
2s

s+m

)
ei(s−m)ϕ

(
cos θ

2

)s+m(
sin θ

2

) s−m

|s,m⟩. (36)

For s = 1
2
,

|n0⟩ = cos θ
2
|1
2
, 1
2
⟩+ eiϕ sin θ

2
|1
2
,−1

2
⟩. (37)

For s = 1,

|n0⟩ = cos2 θ
2
|1, 1⟩+

√
2 eiϕ sin θ

2
cos θ

2
|1, 0⟩+ e2iϕ sin2 θ

2
|1,−1⟩. (38)

Note that |1, 0⟩ is a non-coherent pure state because no values of θ, ϕ yield |n0⟩ = |1, 0⟩. The

spin-1 state |1, 0⟩ is represented on the Majorana sphere by two antipodal stars, meaning

they lie on opposite sides of the sphere. This configuration reflects a state with zero average

spin and purely quadrupolar character. In contrast, a coherent state corresponds to two

coincident stars at the same point on the sphere, indicating maximal polarization along a

single direction.

The set of all spin-s coherent-state rays{
[ |n0(θ, ϕ)⟩ ] : (θ, ϕ) ∈ S2

}
⊂ P(H ) (39)

is homeomorphic to the coset manifold SU(2)/U(1), which is homeomorphic to S2 ∋ (θ, ϕ).

Here, the square brackets denote the ray in projective Hilbert space associated with the ket—

that is, the equivalence class of all vectors differing by a global phase. The homeomorphisms
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can be written as {
[ |n0(θ, ϕ)⟩ ] : (θ, ϕ) ∈ S2

} ∼= SU(2)/U(1) ∼= S2 . (40)

Put differently, the SU(2) coherent-state rays form a submanifold of the projective Hilbert

space P(H ) for arbitrary spin s, which is homeomorphic to the two-sphere S2, a manifold

of real dimension two. By contrast, the full pure-state space of a (2s+1)-level system is the

complex projective space CP2s with real dimension 4s (complex dimension 2s).

In the special case s = 1
2
, one has CP1 ∼= S2; thus, every pure state is an SU(2) coherent

state. Stated otherwise, for spin 1
2
, no pure state lies outside the coherent-state manifold,

and the Bloch sphere parametrizes all pure states.

One may extend from coherent states to mixed states that specifically originate from a

combination of coherent states:

ρ
n

(i)
0

=
∣∣n(i)

0

〉〈
n

(i)
0

∣∣, ρ =
∑
i

pi ρn(i)
0
, (41)

subject to the convexity conditions of∑
i

pi = 1, pi ≥ 0. (42)

From Eq. 16 for coherent states, we obtain the associated von Neumann equation for this

special set of states:

iℏ
dρ

dt
= [Ĥ, ρ]. (43)

Although the von Neumann equation governs the evolution of any density operator, ex-

tending our approach to arbitrary states demands caution. A noncoherent pure state lacks

a single classical spin pseudovector representation; except in the trivial pure-state case, a

mixed-state density operator possesses an uncountable continuum of distinct decompositions

into pure-state ensembles.

GENERALIZATION TO ARBITRARY SPIN IN ANY STATE

For general spin states, we employ spin-1
2
primitives [8] and follow the Majorana construc-

tion or the Schur–Weyl duality [3, 4, 11, 12]. First, the Majorana–Bloch equation for each

primitive is converted into the equivalent von Neumann equation for the single-qubit density
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operator. Next, we take tensor products of these primitives and form the full composite

density operator. Finally, applying the symmetrization projector P̂sym to this composite

density operator restricts the state to the symmetric subspace, which carries the spin-s

representation. Therefore, any spin-s state—pure or mixed—can be obtained from spin-1
2

constituents by symmetrization of their tensor products. At every stage of the conversion,

the corresponding von Neumann equation remains valid.

As shown in the earlier section, the classical Majorana–Bloch equation for each primitive

a,

dn
(a)
0

dt
= γ n

(a)
0 ×B, (44)

can be converted to the von Neumann equation in any pure state for a spin s = 1
2
.

Each primitive a lives on C2 with identity Î2 and Pauli operators σ̂
(a)
i , where i ∈ {x, y, z}.

We write

Ŝ
(a)
i =

ℏ
2
σ̂
(a)
i , [ Ŝ

(a)
i , Ŝ

(b)
j ] = iℏ δab εijk Ŝ(a)

k . (45)

The individual Zeeman-type Hamiltonian is

Ĥ(a) = − γB · Ŝ(a). (46)

For each primitive, we define

X̂(a)
n0

≡ 1

ℏ
n0 · Ŝ(a) =

1

2
n0 · σ̂(a). (47)

Repeating the steps in the earlier section gives

dX̂
(a)
n0

dt
=

1

iℏ
[
Ĥ(a), X̂(a)

n0

]
. (48)

For s = 1
2
, the polynomial (Eq. 10) reduces to

ρ(a)n0
= X̂(a)

n0
+

1

2
Î2 =

1

2

(
Î2 + n0 · σ̂(a)

)
. (49)

For coherent states, the von Neumann equation

iℏ
dρ

(a)
n0

dt
=

[
Ĥ(a), ρ(a)n0

]
. (50)

Because for s = 1
2
all pure states are coherent states, the von Neumann equation for any

pure state is obtained:

iℏ
dρ(a)

dt
=

[
Ĥ(a), ρ(a)

]
. (51)
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For higher spins, we recapitulate the Majorana construction first for spin one for read-

ability (see Appendix E), then for arbitrary spin for completeness (see Appendix F). Con-

sequently, we reach the von Neumann equation for spin s in pure states:

iℏ
dρs
dt

=
[
Ĥs, ρs

]
. (52)

We now extend from pure states to mixed states:

ρ =
∑
i

pi ρ
i
s, (53)

subject to the convexity conditions of∑
i

pi = 1, pi ≥ 0. (54)

From Eq. 52 for pure states, we readily obtain the associated von Neumann equation for

any states, including mixed states:

iℏ
dρ

dt
= [Ĥs, ρ]. (55)

CONCLUSION

We have generalized our earlier derivation from the Majorana–Bloch equation to the von

Neumann equation for spin-1
2
to arbitrary spin-s within the pure coherent-state manifold.

By exploiting the polynomial form of the coherent-state projector of the spin, we have shown

that the time evolution of the projector satisfies the von Neumann equation. This deriva-

tion establishes a bijective correspondence between the classical Majorana–Bloch equation

on the real-space sphere and its coherent-state quantum analog in the Hilbert-space opera-

tor formalism; therefore, classical and quantum angular-momentum dynamics on the pure

coherent-state manifold are in one-to-one correspondence. As expected from the Ehrenfest

theorem, taking the expectation value of the angular-momentum operator in a coherent

state exactly reproduces the classical Majorana–Bloch equation. We further generalized

the derived von Neumann equation to encompass mixed states that originate from convex

combinations of coherent-state projectors.

Finally, we demonstrated that the Majorana construction offers a unified approach for

building from spin-1
2
primitives to arbitrary spin-s. This framework applies equally to pure
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and mixed states, thereby providing a systematic description of spin dynamics within the

symmetric subspace. The conclusion applies to orbital angular momentum, too.

The derivations remain valid for a time-dependent field B = B(t), since no time deriva-

tives of B enter the commutator relations. However, the present work is restricted to Hamil-

tonians that are linear in spin. Within this regime, the bijection is valid on the coherent-state

manifold. The mapping does not extend to non-linear spin Hamiltonians.

ACKNOWLEDGMENTS

We thank our team members—Kelvin Titimbo, Suleyman Kahraman, Xukun Lin, Qihang

Liu, Mark Zhu, and Arthur Chang—for their fruitful discussions.



12

Appendix A: Proof of the commutation relation for [a · Ŝ, b · Ŝ ]

We show that for any vectors a, b ∈ R3,

[a · Ŝ, b · Ŝ ] = iℏ (a× b ) · Ŝ. (A1)

Substituting

a · Ŝ =
∑
i

ai Ŝi, b · Ŝ =
∑
j

bj Ŝj (A2)

into the left side, we reach

[a · Ŝ, b · Ŝ ] =
∑
i,j

aibj [Ŝi, Ŝj]. (A3)

Resorting to

[Ŝi, Ŝj] = iℏ
3∑

k=1

εijk Ŝk, (A4)

where εijk is the Levi–Civita symbol, we obtain

[a · Ŝ, b · Ŝ ] =
∑
i,j

aibj

(∑
k

iℏ εijk Ŝk

)
= iℏ

∑
i,j,k

aibj εijk Ŝk. (A5)

By definition of the cross-product, one has

(a× b )k =
∑
i,j

εijk ai bj. (A6)

Substitution yields

[a · Ŝ, b · Ŝ ] = iℏ
∑
k

(a× b )k Ŝk = iℏ (a× b ) · Ŝ. (A7)

Appendix B: Proof of the density operator

X̂n0 is a Hermitian operator on a (2s+1)-dimensional space with simple (nondegenerate)

spectrum

{m : m = −s, −s+ 1, . . . , s} (B1)

and eigenvectors {|m⟩n0} satisfying

X̂n0 |m⟩n0 = m |m⟩n0 , ⟨m | m′⟩n0 = δm,m′ . (B2)
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We prove (Eq. 10)

ρn0 =
s−1∏

m′=−s

X̂n0 −m′Î

s−m′ , (B3)

which by construction omits the factor with m′ = s. We claim ρn0 is the rank-one projector

onto the eigenspace of X̂n0 with eigenvalue s, i.e., the density operator. It is a specific

realization of Löwdin’s general projection operator [13, 14].

Since each factor
(
X̂n0 −m′Î

)
/(s−m′) commutes with X̂n0 , the operator ρn0 is diagonal

in the basis {|m⟩n0}. It follows that

ρn0 |m⟩n0 =
s−1∏

m′=−s

m−m′

s−m′ |m⟩n0 . (B4)

If m = s, we have

ρn0 |s⟩n0 = |s⟩n0 . (B5)

If instead m ̸= s, then

ρn0 |m⟩n0 = 0. (B6)

Namely, ρn0 acts as the identity on |s⟩n0 and annihilates all other |m ̸= s⟩. Therefore, we

have

ρn0 = |s⟩n0⟨s|n0 , (B7)

which is the unique rank-one projector onto the eigenspace of X̂n0 with the eigenvalue s and

is hence idempotent (i.e., ρ2n0
= ρn0).

For s = 1
2
, the density operator (Eq. 10 or B3) truncates at degree one:

ρn0 =
1

2
Î +

1

ℏ
n0 · Ŝ, (B8)

which is a pure qubit state. The state points in the direction n0 on the Bloch sphere.

Appendix C: Proof of the commutator expansion

The identity
k−1∑
j=0

X̂j[X̂, Ĥ]X̂k−1−j = [X̂k, Ĥ] (C1)

for any operators X̂ and Ĥ can be proven by induction.
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Step 1. Base case k = 1:

We have

[X̂, Ĥ] = [X̂1, Ĥ], (C2)

and the sum on the left side becomes

0∑
j=0

X̂0[X̂, Ĥ]X̂0 = [X̂1, Ĥ]. (C3)

Therefore, the identity holds for k = 1.

Step 2. Inductive hypothesis:

Assume the identity holds for integer k ≥ 1:

k−1∑
j=0

X̂j[X̂, Ĥ]X̂k−1−j = [X̂k, Ĥ]. (C4)

Step 3. Inductive step:

From the product rule,

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂, (C5)

we reach

[X̂k+1, Ĥ] = [X̂kX̂, Ĥ] = X̂k[X̂, Ĥ] + [X̂k, Ĥ]X̂. (C6)

Applying the inductive hypothesis to [X̂k, Ĥ] yields

[X̂k, Ĥ]X̂ =
(k−1∑
j=0

X̂j[X̂, Ĥ]X̂k−1−j
)
X̂ =

k−1∑
j=0

X̂j[X̂, Ĥ]X̂k−j. (C7)

Substitution into Eq. C6 yields

[X̂k+1, Ĥ] = X̂k[X̂, Ĥ]X̂0 +
k−1∑
j=0

X̂j[X̂, Ĥ]X̂k−j =
k∑

j=0

X̂j[X̂, Ĥ]X̂k−j. (C8)

Therefore, the identity holds for k + 1. By induction, the formula is true for all integers

k ≥ 1.

Appendix D: Proof of the commutation relation for [Ŝ,B · Ŝ ]

For the ith component of Ŝ, we have[
Ŝi, B · Ŝ

]
=

[
Ŝi,

∑
j

BjŜj

]
=

∑
j

Bj[Ŝi, Ŝj]. (D1)
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The spin operators obey [
Ŝi, Ŝj

]
= iℏ

∑
k

εijk Ŝk, (D2)

where εijk is the Levi–Civita symbol. Substituting into Eq. D1 yields[
Ŝi, B · Ŝ

]
=

∑
j

Bj [Ŝi, Ŝj] = iℏ
∑
j,k

εijk Bj Ŝk = iℏ
(
B × Ŝ

)
i
. (D3)

Thus, we reach [
Ŝ, B · Ŝ

]
= iℏB × Ŝ = − iℏ Ŝ ×B. (D4)

Appendix E: Majorana construction for spin one in pure state

1. Tensor-product space

We consider two spin-1
2
constituents labeled by a ∈ {1, 2} and assume γ and B are

independent of a so that both spins couple identically to the external field. Let ρ be a

density operator on C2 ⊗ C2, and for concreteness, one may start from a product

ρ ≡ ρ(1) ⊗ ρ(2). (E1)

The individual Hamiltonian is

Ĥ(a) = −γB · Ŝ(a). (E2)

The two-spin Hamiltonian is

Ĥtot ≡ Ĥ(1) ⊗ Î2 + Î2 ⊗ Ĥ(2) = − γB ·
(
Ŝ(1) + Ŝ(2)

)
. (E3)

The von Neumann equation for the two-spin system is

iℏ
dρ

dt
=

[
Ĥtot, ρ

]
. (E4)

2. Symmetrization

We introduce the permutation operator P̂π. Acting on the product basis states of two

spin-1
2
particles yields

P̂π |↑↑⟩ = |↑↑⟩ , P̂π |↑↓⟩ = |↓↑⟩ , P̂π |↓↑⟩ = |↑↓⟩ , P̂π |↓↓⟩ = |↓↓⟩ . (E5)
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We then define the symmetric projector

P̂sym ≡ Î4 + P̂π

2
. (E6)

For comparison, the antisymmetric projector is P̂asym ≡ 1
2

(
Î4 − P̂π

)
.

Permutation invariance gives

[
Ĥtot, P̂π

]
= 0,

[
Ĥtot, P̂sym

]
= 0. (E7)

Thus, the triplet sector is dynamically isolated from the singlet one.

We next define the spin-one density operator as the symmetric-sector restriction.

ρ(1) ≡ P̂sym ρ P̂sym. (E8)

One can show Tr ρ(1) = Tr
(
P̂symρ

)
using cyclicity of trace and idempotency of P̂sym.

As a 4× 4 operator, ρ(1) has support only on the symmetric sector; it acts effectively on

a three-dimensional subspace. We note that ρ(1) is positive semidefinite:

⟨v|ρ(1)|v⟩ = ⟨v| P̂symρ P̂sym|v⟩ = ⟨w|ρ|w⟩ ≥ 0, |w⟩ = P̂sym|v⟩. (E9)

The symmetric projector produces the entire triplet subspace, of which the spin-one coherent

states form a subset where the two primitive spin-1
2
states are aligned.

We differentiate ρ(1) = P̂sym ρ P̂sym using the time independence of P̂sym

dρ(1)
dt

= P̂sym
dρ

dt
P̂sym. (E10)

We insert (E4) and expand the commutator

iℏ
dρ(1)
dt

= P̂symĤtotρ P̂sym − P̂symρ ĤtotP̂sym. (E11)

Using [Ĥtot, P̂sym] = 0 and ρ(1) = P̂symρ P̂sym yields

iℏ
dρ(1)
dt

=
[
P̂symĤtotP̂sym, ρ(1)

]
. (E12)

We define the projected spin-one Hamiltonian

Ĥ(1) ≡ P̂symĤtotP̂sym. (E13)
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We define the projected total spin operator,

Ŝ
∣∣
s=1

≡ P̂sym

(
Ŝ(1) + Ŝ(2)

)
P̂sym, (E14)

leading to

Ĥ(1) = −γB · Ŝ
∣∣
s=1

. (E15)

Therefore, the induced dynamics close within the triplet sector

iℏ
dρ(1)
dt

= [ Ĥ(1), ρ(1) ]. (E16)

If ρ is initially supported entirely on the triplet, then ρ(1) = ρ and Tr ρ(1) = 1. Other-

wise, Tr ρ(1) is the conserved triplet population, and a normalized spin-one state is ϱ(1) ≡

ρ(1)/Tr ρ(1).

3. Coupled-basis representation

We reorganize the tensor-product space into irreducible components of total spin via the

Clebsch–Gordan transform. We change from the uncoupled basis to the coupled basis

{
|1, 1⟩, |1, 0⟩, |1,−1⟩, |0, 0⟩

}
(E17)

with

|1, 1⟩ = |↑↑⟩ , |1, 0⟩ = |↑↓⟩+ |↓↑⟩√
2

, |1,−1⟩ = |↓↓⟩ , |0, 0⟩ = |↑↓⟩ − |↓↑⟩√
2

. (E18)

Let U be the Clebsch–Gordan unitary whose columns are the vectors in (E18) written in the

uncoupled basis {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}:

U =


1 0 0 0

0 1√
2
0 1√

2

0 1√
2
0 − 1√

2

0 0 1 0

 , U †U = I4. (E19)

Using Ŝ
(a)
i = ℏ

2
σ̂
(a)
i , where i ∈ {x, y, z}, we reach

Ŝi = Ŝ
(1)
i + Ŝ

(2)
i = ℏ

2

(
σ̂i ⊗ Î2 + Î2 ⊗ σ̂i

)
. (E20)
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Transforming with U yields

U † Ŝi U =

Ĵi 0

0 0

 . (E21)

The commutators satisfy [Ĵi, Ĵj] = iℏ εijkĴk, and the Casimir gives Ĵ2 = Ĵ2
x+Ĵ2

y+Ĵ2
z = 2ℏ2 Î3.

Thus, the upper 3×3 block Ĵi acts on the triplet, and the lower entry annihilates the singlet.

Equivalently,

U † Ĥtot U =

Ĥtriplet 0

0 0

 , (E22)

where the triplet Hamiltonian

Ĥtriplet ≡ −γB · Ĵ . (E23)

In the uncoupled basis, we have

Pπ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , Psym =
I4 + Pπ

2
=

1

2


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 . (E24)

In the coupled basis, we obtain

Πsym ≡ U † Psym U = diag(I3, 0). (E25)

Thus, Psym acts as identity on the triplet and as zero on the singlet. Similarly,

Πasym ≡ U † Pasym U = diag(03, 1). (E26)

In the coupled basis I4 = Πsym +Πasym with ΠsymΠasym = 0, one can show

U †ρU =

ρtriplet C

C† ρsinglet

 , ρtriplet ∈ C3×3, C ∈ C3×1, ρsinglet ∈ C. (E27)

We apply U to the projected von Neumann equation (E16). Since U is time independent,

U †
(
iℏ

dρ(1)
dt

)
U = iℏ

d

dt

(
U †ρ(1)U

)
=

[
U †Ĥ(1)U, U †ρ(1)U

]
. (E28)

We set ρ̃(1) ≡ U †ρ(1)U and H̃(1) ≡ U †Ĥ(1)U , which gives

iℏ
dρ̃(1)
dt

=
[
H̃(1), ρ̃(1)

]
. (E29)
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For any operator A, one has

U †P̂symAP̂symU = Πsym (U †AU)Πsym. (E30)

Hence

ρ̃(1) = Πsym (U †ρU)Πsym =

ρtriplet 0

0 0

 , (E31)

H̃(1) = Πsym (U †ĤtotU)Πsym =

Ĥtriplet 0

0 0

 . (E32)

Reading off the triplet block yields the Dicke-basis form

iℏ
dρtriplet

dt
=

[
Ĥtriplet, ρtriplet

]
, (E33)

which is unitarily equivalent to (E16). Here U effects only a change of basis on the full

space, while the restriction to the symmetric subspace is effected by P̂sym. Equivalently, one

may first transform (E4) by U and then project; both routes give the same triplet dynamics.

Since we restrict to the symmetric subspace with total spin one, the working basis is the

Dicke basis.

Appendix F: Majorana construction for spin s in pure state

1. Tensor-product space

Let N = 2s and consider N spin-1
2
constituents labeled by a = 1, . . . , N . Assume γ and

B are independent of a (identical coupling). Let ρ be a density operator on (C2)⊗N ; for

concreteness, one may start from a product ρ =
⊗N

a=1 ρ
(a). The single-spin Hamiltonian is

Ĥ(a) = −γB · Ŝ(a). (F1)

The total Hamiltonian and the von Neumann equation are

Ĥtot = − γB ·
N∑
a=1

Ŝ(a), iℏ
dρ

dt
=

[
Ĥtot, ρ

]
. (F2)
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2. Symmetrization

Let P̂π be the unitary representation of a permutation π ∈ SN . Since Ĥtot is permutation

invariant,

P̂π Ĥtot P̂
†
π = Ĥtot ⇒

[
Ĥtot, P̂π

]
= 0 ∀ π. (F3)

Let P̂
(N)
sym denote the projector onto the fully symmetric subspace SymN(C2) (dimension

N + 1 = 2s+ 1). Define the projected density operator

ρ(s) ≡ P̂ (N)
sym ρ P̂ (N)

sym . (F4)

By idempotency and cyclicity, Tr ρ(s) = Tr
(
P̂

(N)
symρ

)
, which is conserved because [Ĥtot, P̂

(N)
sym ] =

0. Thus ρ(s) evolves unitarily within the symmetric sector, and ϱ(s) ≡ ρ(s)/Tr ρ(s) is the

normalized spin-s state. We note that ρ(s) is positive semidefinite: ⟨v|ρ(s)|v⟩ = ⟨w|ρ|w⟩, |w⟩ =

P̂
(N)
sym |v⟩. Moreover, Tr ρ(s) = Tr

(
P̂

(N)
sym ρ

)
is conserved because [Ĥtot, P̂

(N)
sym ] = 0.

Differentiating ρ(s) and using time independence of P̂
(N)
sym gives

iℏ
dρ(s)
dt

=
[
P̂ (N)
symĤtotP̂

(N)
sym , ρ(s)

]
. (F5)

Introduce the projected generators and Hamiltonian

Ŝ
∣∣
s
≡ P̂ (N)

sym

( N∑
a=1

Ŝ(a)
)
P̂ (N)
sym , Ĥ(s) ≡ −γB · Ŝ

∣∣
s
, (F6)

to obtain the closed spin-s evolution

iℏ
dρ(s)
dt

=
[
Ĥ(s), ρ(s)

]
. (F7)

3. Coupled-basis representation

Writing single-primitive operators as Ŝ
(a)
i = ℏ

2
σ̂
(a)
i with i ∈ {x, y, z},

Ŝi =
N∑
a=1

Ŝ
(a)
i =

ℏ
2

N∑
a=1

(
Î2 ⊗ · · · ⊗ σ̂i︸ ︷︷ ︸

ath

⊗ · · · ⊗ Î2

)
. (F8)

Projecting to the symmetric sector defines

Ŝ
∣∣
s
≡ P̂ (N)

sym Ŝtot P̂
(N)
sym , (F9)
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which is unitarily equivalent to the standard (2s+1) × (2s+1) representation Ĵ (s). In a

coupled basis that orders the fully symmetric spin-s sector first, there exists a unitary UN

such that

U †
N P̂ (N)

sym UN = diag(Î2s+1, 0), U †
N Ŝtot UN =

Ĵ (s) 0

0 ⋆

 . (F10)

Here, ⋆ denotes the direct sum
⊕

j<s( Ĵ
(j) ⊗ Îmj

) taken over the lower-spin irreps with

multiplicities mj. Consequently, for the projected Hamiltonian,

U †
N Ĥ(s) UN =

−γB · Ĵ (s) 0

0 0

 . (F11)

Define the coupled-basis operators

ρ̃(s) ≡ U †
Nρ(s)UN ,

˜̂
H(s) ≡ U †

NĤ(s)UN . (F12)

Since UN is time independent, the von Neumann equation is invariant:

iℏ
dρ̃(s)
dt

=
[ ˜̂
H(s), ρ̃(s)

]
. (F13)

Using (F10)–(F12), the block forms are

ρ̃(s) =

ρs 0

0 0

 ,
˜̂
H(s) =

−γB · Ĵ (s) 0

0 0

 , ρs ∈ C(2s+1)×(2s+1). (F14)

Reading off the (2s+1) block yields the closed spin-s evolution

iℏ
dρs
dt

=
[
−γB · Ĵ (s), ρs

]
. (F15)

Equivalently, defining the coupled-basis spin-s Hamiltonian

Ĥs ≡ −γB · Ĵ (s), (F16)

we have

iℏ
dρs
dt

=
[
Ĥs, ρs

]
. (F17)
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4. Verification

We now present a proof that symmetrization of 2s spin-1
2
primitives yields the spin-

s irreducible representation, demonstrating how the fully symmetric subspace realizes the

SU(2) action.

We take N = 2s. The full Hilbert space is (C2)⊗N , spanned by product states of N spin-1
2

primitives. We define the total spin operators

Ŝi ≡
N∑
a=1

Ŝ
(a)
i , Ŝ± ≡ Ŝx ± i Ŝy, (F18)

where Ŝ
(a)
i acts nontrivially only on the a-th primitive. On the full space, they satisfy the

su(2) commutators

[ Ŝi, Ŝj ] = iℏ εijk Ŝk. (F19)

We first note permutation invariance. For any permutation unitary P̂π ∈ SN ,

P̂π Ŝi P̂
†
π =

N∑
a=1

Ŝ
(π(a))
i = Ŝi. (F20)

Hence, the total spin operators commute with every permutation. Consequently, [ P̂
(N)
sym , Ŝi ] =

0, and the symmetric subspace is invariant under the total spin action. That is, if a quantum

state lies in the symmetric subspace, then the action of Ŝi preserves that symmetry and yields

another state within the same subspace.

We then construct a highest-weight state. The fully polarized state

|Ω⟩ ≡ |↑⟩⊗N ∈ SymN(C2) (F21)

is symmetric under permutations and satisfies

Ŝz |Ω⟩ = sℏ |Ω⟩ , Ŝ+ |Ω⟩ = 0. (F22)

Hence, |Ω⟩ is the highest-weight vector of weight s, i.e., |s, s⟩.

We build the ladder by repeated application of Ŝ−

|s,m = s− k⟩ ≡ Ck Ŝ
k
− |Ω⟩ , Ck ≡ ℏ−k

( k! (2s)!

(2s− k)!

)−1/2

. (F23)

The properly normalized ladder state is obtained by applying the lowering operator k times to

the highest-weight state |s, s⟩ and compensating for the combinatorial growth of amplitudes



23

with a normalization factor Ck. Because Ŝ− is permutation symmetric and |Ω⟩ is symmetric,

each |s,m⟩ lies in SymN(C2).

We next verify the generator action by using the su(2) commutators and the Casimir

relation, which shows how the operators preserve the ladder structure:

Ŝz |s,m⟩ = mℏ |s,m⟩ , Ŝ± |s,m⟩ = ℏ
√

s(s+ 1)−m(m± 1) |s,m± 1⟩ . (F24)

Therefore, the set {|s,m⟩}sm=−s indeed forms a closed su(2) ladder inside the symmetric

subspace.

We count the dimension. There are N + 1 = 2s + 1 distinct ladder states with different

Ŝz eigenvalues, hence they are linearly independent. Since dimSymN(C2) = N + 1, these

vectors form a basis of the symmetric subspace. Therefore, the symmetric subspace carries

an irreducible representation of su(2) with highest weight s.

We finally confirm the Casimir eigenvalue. With

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z , (F25)

we have on the highest-weight vector

Ŝ2 |Ω⟩ = ℏ2s(s+ 1) |Ω⟩ . (F26)

Since Ŝ2 commutes with all generators and with Ŝ−,

Ŝ2
(
Ŝk
− |Ω⟩

)
= Ŝk

− Ŝ2 |Ω⟩ = ℏ2s(s+ 1) Ŝk
− |Ω⟩ . (F27)

Thus, every descendant |s,m⟩ ∝ Ŝk
− |Ω⟩ carries the same eigenvalue. On the entire symmetric

subspace,

Ŝ2
∣∣
SymN = ℏ2s(s+ 1) Î2s+1. (F28)

We conclude that the restricted operators

Ŝi

∣∣
s
≡ P̂ (N)

sym Ŝi P̂
(N)
sym (F29)

realize the unique (2s+ 1)-dimensional irrep of su(2).
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