
Geometric interpretation of the hyperfine Breit–Rabi
solution

Lihong V. Wang

Caltech Optical Imaging Laboratory
Andrew and Peggy Cherng Department of Medical Engineering

Department of Electrical Engineering
California Institute of Technology

1200 E. California Blvd., MC 138-78
Pasadena, CA 91125, USA

LVW@caltech.edu

September 16, 2025

Abstract

We present a geometric interpretation of the hyperfine Breit–Rabi eigenvalues and
eigenvectors in alkali atoms after reformulating the standard solution into a compact
form. In this picture, the nuclear magnetic moment has a polar angle fixed by the total
projection quantum number. In contrast, the electron magnetic moment anti-aligns or
aligns with an effective field formed by both the external magnetic flux density and
the nuclear field, which simultaneously sets the mixing angle of the eigenvectors. This
geometric view offers intuitive insight into the structure of the solutions.

Keywords hyperfine structure; Breit–Rabi; geometric interpretation; alkali atoms, quantum–
classical correspondence

1 Introduction

The Breit–Rabi formula gives the dependence of hyperfine levels in atoms with a single
valence electron on the magnetic flux density [1–3]. The derivation proceeds by diagonalizing
the hyperfine Hamiltonian. Here, we recast the solution in a geometric form that resolves
the roles of the electron and nuclear magnetic moments and clarifies how the total angular
momentum quantum number F and the projection mF quantize the relevant angles.

Figure 1 illustrates a canonical hyperfine Zeeman diagram for 6
3Li with the nuclear spin

quantum number I = 1. The Zeeman diagram displays the hyperfine energy levels of the
system as a function of the applied magnetic flux density B. The top four levels constitute

1

ar
X

iv
:2

50
9.

12
19

1v
1 

 [
ph

ys
ic

s.
at

om
-p

h]
  1

5 
Se

p 
20

25

https://arxiv.org/abs/2509.12191v1


the upper manifold, corresponding to the total angular momentum quantum number F = 3
2
,

while the lower two levels form the lower manifold with F = 1
2
. Within the upper manifold,

the two straight lines represent the stretched states, whereas oblique states refer to all other
Zeeman sublevels. Each manifold converges to a single frequency or energy as B → 0.
An essential feature of the diagram is the mirror symmetry between the upper and lower
manifolds in the oblique states. For I = 1

2
, 3
2
, see Appendices A and B, respectively.

Figure 1: Hyperfine Zeeman structure of 6
3Li with I = 1.

In the following, we first recapitulate the hyperfine Hamiltonian that governs the coupled
electron–nuclear spin system, followed by the Breit–Rabi eigenstate solution in a finite field.
We present a geometric interpretation of the Breit–Rabi solution, which provides intuitive
insight into the underlying spin dynamics. Next, we geometrically represent the total an-
gular momentum quantum numbers F and mF in a vanishing field. A discussion follows,
highlighting the physical implications of this picture. For completeness, we include in the
appendices a recapitulated derivation of the Breit–Rabi solution and a reformulation of the
associated mixing angle, as well as a reformulated Hamiltonian in Pauli form.

2 Hyperfine Hamiltonian

For an s-electron alkali atom in a static external magnetic flux density B, the hyperfine
Hamiltonian is

Ĥ = −µ̂e ·B − µ̂n ·B + A Ŝ · Î, (1)

where Ŝ and Î are the dimensionless electron and nuclear spin operators with spin quantum
numbers S and I, respectively; µ̂e = γeℏŜ and µ̂n = γnℏÎ are the electron and nuclear
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magnetic moment operators; γe and γn are the corresponding gyromagnetic ratios; ℏ is the
reduced Planck constant; and A is the hyperfine coupling constant. Here, S = 1

2
.

The total angular momentum operator is

F̂ = Ŝ + Î, (2)

with Ŝ and Î the electron and nuclear spin operators, respectively. The z-axis is taken along
the direction of B, i.e., z ∥ B.

In the limit of an infinitesimal magnetic flux density (B → 0), where B = |B|, the
hyperfine Hamiltonian Ĥ commutes with the total angular momentum squared,

[Ĥ, F̂ 2] −−−→
B→0

0. (3)

Thus, the magnitude quantum number F is a good quantum number at B = 0 and an
asymptotic good quantum number in this limit. We use the zero-field parent states F as
adiabatic labels for the two branches at fixed mF .

For any values of B, the Hamiltonian commutes with the z-component of the total angular
momentum,

[Ĥ, F̂z] = 0 ∀B, (4)

which implies that the projection quantum number mF is always conserved.

3 Breit–Rabi eigenstate solution

The eigenenergies for F = I ± S ≡ F± and projection mF are derived for completeness in
Appendix C [1–3]:

E±(mF , B) = − h∆ν

2(2I + 1)
− µNgImFB ± h∆ν

2

√
1 +

2mFx

I + S
+ x2. (5)

where µN is the nuclear magneton and gI is the nuclear g-factor. The dimensionless field
parameter x is defined by

x ≡ −ℏ(γe − γn)B

AF+

=
−geµB + gIµN

h∆ν
B, (6)

where µB is the Bohr magneton and ge < 0, in our sign convention, is the electron g-factor.
Because −geµB dominates, x > 0 for alkali atoms at B > 0. The zero-field hyperfine splitting
energy determines the hyperfine coupling constant as follows:

h∆ν = A(I + S), (7)

where h is the Planck constant and ∆ν is the frequency separation between the hyperfine
levels at B = 0.

The signed magnitudes of the electron and nuclear magnetic moments are

µe = γeSℏ < 0, µn = γnIℏ. (8)
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The electron gyromagnetic ratio is given by

γe =
µBge
ℏ

< 0, (9)

where the negative sign reflects the negative charge of the electron. The nuclear gyromagnetic
ratio is

γn =
µNgI
ℏ

. (10)

We consider only positive γn here because γn > 0 for most alkali nuclei.
The original Breit–Rabi eigenvalue formula ensures that the mean energy of all levels is

set to zero. An alternative option shifts the energy levels so that the mean of all oblique
levels vanishes:

E±(mF , B) = −µNgImFB ± h∆ν

2

√
1 +

2mFx

I + S
+ x2. (11)

The stretched states (mF = ±F+) correspond to S and I being parallel, producing
maximal total angular momentum in the upper manifold. The oblique states (|mF | < F+)
refer to all other Zeeman sublevels and correspond to different orientations between S and I
for nonzero B, resulting in a total angular momentum vector F tilted relative to both spins.

Since the projection quantum number mF is always conserved, for each fixed mF and
S = 1

2
, the relevant subspace is two-dimensional with the product basis

|+⟩ =
∣∣mS = +1

2

〉
⊗
∣∣mI = mF − 1

2

〉
, |−⟩ =

∣∣mS = −1
2

〉
⊗
∣∣mI = mF + 1

2

〉
. (12)

The normalized eigenvectors corresponding to E± are

|ψ±⟩ = cos
α

2
|±⟩ ± sin

α

2
|∓⟩ . (13)

The mixing angle α is derived in Appendix D:

tanα =
Bn sin θ

ηγB +Bn cos θ
, (14)

where

ηγ ≡ 1− γn
γe

= 1 +O
(

1

1836

)
(15)

is introduced as a boost factor related to the gyromagnetic ratios for the electron Zeeman
energy. Because the electron and nuclear gyromagnetic ratios differ by several orders of
magnitude, the factor ηγ exceeds unity only slightly. When the angle α equals either 0 or π,
we reach the stretched states, which are product states. In contrast, for other values of α,
we obtain oblique states, which are entangled.

4 Geometric interpretation of the Breit–Rabi solution

In the zero-field limit, the eigenstates of the total angular momentum correspond to parallel
(F = I + S) or antiparallel (F = I − S) coupling of the electron and nuclear magnetic
moments. We introduce Bn to denote the effective magnetic flux density pseudovector at the
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electron produced by the nucleus; it is proportional to and parallel with the nuclear magnetic
moment pseudovector µn for an s-electron alkali atom via the Fermi-contact interaction [4,
5]. Therefore, the zero-field hyperfine splitting can be written as

h∆ν = ∆(−µe ·Bn) = −2µeBn, (16)

Similarly, one can write h∆ν = −2µnBe. The quantity Be denotes the effective magnetic
flux density pseudovector at the nucleus produced by the electron and is proportional to and
parallel with the electron magnetic moment pseudovector µe.

The dimensionless field parameter can be rewritten as

x ≡ −µBge + µNgI
−2µe

B

Bn

≡ ηγB

Bn

. (17)

Next, we reformulate the standard Breit–Rabi eigenvalue formula to facilitate interpreta-
tion. By inspecting Eq. 11 after substitutions for h∆ν (Eq. 16) and x (Eq. 17), we observe
that the square root term arises naturally from the cosine law. Accordingly, we define the
polar angle θ such that

cos θ ≡ mF

I + S
. (18)

Note that the denominator I + S and the numerator mF ∈ [−(I + S), I + S] are for both
the upper and lower manifolds, and one should not use F = I − S or

√
(I + S)(I + S + 1)

[6] to determine θ. For now, this θ is a bookkeeping angle determined by mF and the fixed
scale I + S. We use it to cast energies in a compact cosine-law form.

Then, we also introduce a boost factor related to the angular momenta for the nuclear
Zeeman energy

ηa = 1 + S
I

(19)

and an effective total field to be seen by the electron

Bt = ηγB +Bn, Bt =
√

(ηγB)2 +B2
n + 2 (ηγB)Bn cos θ. (20)

Consequently, Eq. 11 takes the compact form

E± = −µn ηaB cos θ ∓ µeBt = −µn · ηaB − µe ·Bt, (21)

where the upper and lower signs correspond to the electron magnetic moment being antipar-
allel or parallel to Bt as labeled by F±. The first term on the right-hand side represents
the nuclear Zeeman energy, where ηnB is the effective field due to hyperfine coupling. The
second term encompasses both the electron Zeeman energy and the hyperfine coupling en-
ergy. Now, it is clear that the polar angle θ determines that of the nuclear magnetic moment
in the nuclear Zeeman contribution term, i.e., θn = θ, regardless of the external field or
the eigenstate. While the full vector expectation ⟨Î⟩ varies with the mixing angle α, this
variation does not affect the term −µNgImFB.

The oblique states use mF to set θ ̸= 0 or π , and the eigenenergies are split by ±µeBt.
In contrast, the stretched states with mF = ±(I +S) have θ = 0 or π, and the eigenenergies
reduce to

Es± = ∓(µe + µn)B − µeBn = ∓µnB − µe(±B +Bn). (22)
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Note that the boost factors have vanished. For the lower stretched state (θ = π), we used
Bt = Bn − ηγB at all field strengths when resolving the square root in Eq. 20.

Figure 2 presents a plausible geometric interpretation of the exact Breit–Rabi eigenvalue
formula, summarizing the above observations. It is essential to note the constraint Bn ∥
µn. The electron magnetic moment µe is the only quantity that varies between the two
eigenstates.

mF

ηaB

I + S
µnθ

ηγB

Bn ∥ µn

Bt

µe+

µe−
π − θ

α

Figure 2: Geometric interpretation of the exact Breit–Rabi eigenenergies for a given mF ,
where θ is set by mF via cos θ ≡ mF

I+S
(Eq. (18)) and α is the polar angle of Bt via Eq. (14).

The left triangle shows that the nuclear magnetic moment µn has polar angle θn = θ,
independent of the external field magnitude or the eigenstates |ψ+⟩ and |ψ−⟩ for a given mF .
The right triangle shows the two allowed orientations of the electron magnetic moment µe

relative to Bt, pointing either against (+) or along (−) Bt for eigenstates |ψ+⟩ and |ψ−⟩, i.e.,
its polar angle θe = {α, π + α} on the two-dimensional cross-section; it is the only quantity
that varies between the two eigenstates. Alternatively, one can define the polar angle θ to
lie within the interval [0, π] and the azimuthal angle ϕ within [0, 2π) to parameterize the
two-sphere S2; then, θe = {α, π + α} becomes θe = {α, π − α} paired with ϕe = {0, π}.

The Hamiltonian block in the fixed-mF two-dimensional subspace can be reformulated
into Pauli form (see Appendix E):

HmF
= −(µnτ0) · (ηaB)− (µeτ ) ·Bt, (23)

where τ is the effective Pauli operator vector (Eq. 61). It is illuminating to compare the
Hamiltonian in this representation with the reformulated eigenvalues given in Eq. 21, which
we repeat below for convenience:

E± = −µn ηaB cos θ ∓ µeBt = −µn · (ηaB)− µe ·Bt. (24)

We conclude that the first term represents the nuclear Zeeman contribution, while the second
term incorporates both the electron Zeeman and hyperfine-interaction energies. Note that
the eigenstates are the τ -spinors parallel or antiparallel to b = −µeBt:

τ̂ · ne |ψ±⟩ = ± |ψ±⟩ , ne =
b

|b|
. (25)

The effective field Bt determines the mixing angle α, as shown in Appendix D; it also
determines the direction of the electron magnetic moment (see Appendix E). Any pure state
of a two-level system can be represented as a point on the Bloch sphere, with the two
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orthonormal basis states conventionally located at the north and south poles. Therefore,
the eigenvectors at a given mF can be represented using the Bloch sphere (Fig. 3); in real
space, the electron magnetic moment pseudovector is either anti-aligned or aligned with Bt

(see Appendix E).

B
|+⟩

|−⟩

|ψ+⟩

Bt

µe

α

B
|+⟩

|−⟩

µe

Bt

|ψ−⟩

α

Figure 3: For the two-level subspace, Bloch-sphere representation of the exact Breit–Rabi
eigenstates of Ĥ at a given mF (in red) and the real-space quantities from Fig. 2 associated
with the eigenvalues (in black). Note that µe here points either against or along Bt, i.e.,
its polar angle θe = {α, π + α} on the two-dimensional cross-section. Note that |±⟩ =∣∣mS = ±1

2

〉
⊗
∣∣mI = mF ∓ 1

2

〉
, HmF

= −µnτ0 · ηaB − µeτ ·Bt, |ψ±(mF , B)⟩ = cos α
2
|±⟩ ±

sin α
2
|∓⟩, and E±(mF , B) = −µn ηaB cos θ ∓ µeBt = −µn · ηaB − µe ·Bt.

5 Geometric interpretation at B → 0

In the limit B → 0, F is an asymptotic good quantum number, and the allowed eigenstates
are labeled by F and mF , and the corresponding eigenstates admit a more straightforward
geometric interpretation. Figure 4 illustrates the geometry of the total angular momentum
F = S + I for 6

3Li with nuclear spin I = 1 in the limit B → 0. The polar angle of µn is
determined by Eq. 18. The polar angle of Bt

lim
x→0

α = θ. (26)

The upper four configurations form the manifold with total angular momentum quantum
number F = 3

2
, corresponding to the electron and nuclear spins S and I being aligned

or their magnetic moments anti-aligned. In comparison, the lower two configurations con-
stitute the manifold with F = 1

2
, which arises when S and I are oriented anti-aligned or

their magnetic moments are aligned. Note that for the electron, the magnetic moment and
the spin pseudovectors point in opposite directions due to the negative gyromagnetic ratio.
Conversely, for the nucleus with a positive gyromagnetic ratio, the magnetic moment and
the spin pseudovectors align in the same direction. See Appendices A and B for I = 1

2
, 3
2
,

respectively. One may now introduce a field and vary it to rotate the electron magnetic
moment µe adiabatically according to the right panel in Fig. 2.
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z
µn

µe

F = 3
2
, mF = 3

2

z

µn

µe

1
2

z

µn

µe

−1
2

z

µn

µe

−3
2

z

µn

µe

F = 1
2
, mF = −1

2

z

µn

µe

1
2

Figure 4: Geometric interpretation of the electron and nuclear magnetic moments for 6
3Li

with I = 1 in the limit B → 0. The z axis is taken along the direction of the magnetic flux
density B. The polar angle of µn is determined by Eq. 18, whereas the alignment of µe with
respect to µn is determined by F . Due to the negative gyromagnetic ratio, the electron’s
magnetic moment points opposite to its spin pseudovector.

6 Discussion

The geometric interpretation indicates that the nuclear magnetic moment µn is determined
by the polar angle θ, independent of the external field B, while the electron’s magnetic mo-
ment aligns or anti-aligns with the effective field Bt. As B increases in magnitude slowly, Bt

changes accordingly, and the electron’s magnetic moment µe follows this field adiabatically.
Stated differently, as the external field changes, Bt changes, and µe follows it adiabatically,
while µn remains stable at a given mF . This asymmetry likely arises because the nuclear
gyromagnetic ratio is orders of magnitude smaller, making nuclear spin precession much
slower, while the electron spin rapidly adapts.

At B = 0, we label the eigenstates by |F,mF ⟩ because [Ĥ, F̂ 2] = 0. For B > 0, the
hyperfine and Zeeman terms do not commute with F̂ 2, so F is not conserved. Nevertheless,
mF remains conserved for all B because of axial symmetry, and each fixed mF subspace is
at most two-dimensional for S = 1

2
. Turning on B slowly, the adiabatic theorem guarantees

that a state initially in |F±,mF ⟩ evolves into the corresponding instantaneous eigenstate
E±(mF , B) without interbranch transitions. It is therefore natural to keep the zero-field
F± to label the two adiabatic branches for each mF , which justifies calling F an adiabatic
label; F itself is not conserved for B > 0. In particular, the stretched branches carry unique
zero-field parents and remain unmixed as product states at all B. In contrast, the oblique
branches are the adiabatic continuations of the F+ and F− parents, but they become mixtures
of the two manifolds as entangled states as the field increases.

Even for protium (11H, I = S), the electron and nucleus behave asymmetrically, despite
the apparent symmetry of the Hamiltonian. This asymmetry is likely rooted in the significant
disparity between the electron and nuclear magnetic moments and their gyromagnetic ratios.

We will present the following discussions to encourage further investigation and dialogue.
It is intended as a conceptual prompt rather than a definitive conclusion. Readers primarily
interested in the main results may proceed to the next section.
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The geometric interpretation, along with the above discussion, inspires the following
adiabatic process to approximate the exact Breit–Rabi solution. Readers are referred to Fig.
1, Fig. 6, and Fig. 8 for guidance, and should follow the field strengths indicated below.

(1) Electron spin in Bn without an external field (B = 0).
In the absence of an external field, the electron spin collapses to an eigenstate defined by

the nuclear field Bn. The Zeeman interaction Hamiltonian is

Ĥ(0)
e = −γeŜ ·Bn. (27)

Two hyperfine manifolds emerge as F+ = I + S and F− = I − S.
(2) F̂ in an infinitesimally weak external field (B → 0).
In the weak field regime where F remains an asymptotically good quantum number, the

Zeeman interaction is well described by

ĤF = −µBgF F̂ ·B, (28)

with gF the hyperfine Landé factor. The angle θ of the quantized direction satisfies

cos θ =
mF

I + S
, (29)

which agrees with Eq. 18.
(3) Nuclear Zeeman energy in a finite-magnitude external field (B ̸= 0) without re-

quantization.
To quantify the nuclear Zeeman contribution, we define

Ĥn = −µ̂n ·B = −γnÎ ·B. (30)

However, we do not quantize the nuclear spin again; instead, we define its orientation by
θn = θ, determined under B → 0, which also orients Bn ∥ µn

(4) Electron spin in the total effective field Bt.
When an external field is present, the electron spin is quantized along the total effective

field Bt. The corresponding interaction Hamiltonian is

Ĥe = −µ̂e ·Bt = −γeŜ ·Bt. (31)

This construction makes explicit that the electron senses both the applied field and the
nuclear field. The slight deviation of ηγ in the expression of Bt from unity due to hyperfine
coupling might be related to the precessing Bn; thus, the natural quantization axis Bt is
not stationary.

(5) Total energy.
Collecting the contributions without double-counting the hyperfine coupling energy, we

yield the following energy

E± = −µnB cos θ ∓ µeBt = −µn ·B − µe ·Bt. (32)

This equation reaches Eq. 21 if we set ηa = 1, which we found leads to only a minor error
(typically 10−4−10−3) due to the much smaller nuclear Zeeman contribution to the total
energy.
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Through the hyperfine coupling, the electron and nuclear spins mutually dress each other,
giving rise to the joint eigenstates of the Breit–Rabi Hamiltonian (see Appendix F). Within
each fixed-mF block, the nuclear Zeeman energy contribution boosted by ηa through hyper-
fine coupling, − ηaµnB cos θ, depends only on cos θ = mF/(I +S), which is common to both
eigenstates. While α depends on B, θ does not. A possible geometric picture treats the
µn as aligned with the quantization direction set by mF ; in operator language, components
transverse to F̂z do not affect the eigenenergy. Because the total angular momentum pro-
jection operator F̂z = Ŝz + Îz determines the angle θ, the nuclear spin appears to follow the
same projection and its Zeeman energy is boosted with I+S

I
.

In the fixed-mF subspace
HmF

= span{|+⟩ , |−⟩}, (33)

using F̂z = Ŝz + Îz yields

F̂z |+⟩ = ℏmF |+⟩ , F̂z |−⟩ = ℏmF |−⟩ , (34)

hence
F̂z

∣∣∣
HmF

= ℏmF 1. (35)

For any normalized |ψ⟩ ∈ HmF

⟨ψ| F̂z |ψ⟩ = ℏmF . (36)

Thus, F̂z is proportional to the identity on HmF
, so any observable of the form f(F̂z) cannot

distinguish states within HmF
, consistent with the commutativity in Eq. 4. If the first

Hamiltonian term depends only on F̂z, the dynamics and all expectation values coincide for
all |ψ⟩ ∈ HmF

. In this restricted sense, the physics reduces effectively to a one-dimensional
sector C1, although the underlying Hilbert space remains two-dimensional C2. Within the
collapsed two-level subspace, the total angular momentum projection remains conserved,
which permits treating the nuclear spin as a classical-like pseudovector.

Therefore, the eigenvectors of F̂z at a given mF can be represented on a Bloch-sphere
visualization of the fixed-mF subspace, emphasizing that the nuclear Zeeman contribution
depends only on θ; the sphere itself is still the two-level space spanned by {|+⟩ , |−⟩} (Fig. 5).
Here, the plus and minus basis vectors coincide in the same direction defined by a fixed polar
angle θ. Regardless of the mixing angle α, the nuclear spin remains oriented in this direction.
Strictly speaking, the full angular momentum operator F̂ determines the spin orientation, but
within the fixed-mF subspace F̂z already fixes the polar angle, and the transverse components
provide no further distinction. Hence, it is sufficient to characterize the nuclear spin direction
using F̂z alone in this context.

7 Conclusion

We presented a geometric interpretation of the Breit–Rabi energies. The total angular
momentum used to quantize the angle θ is taken as I + S for both the upper and lower
manifolds. It establishes a uniform quantization reference for both hyperfine manifolds.

The quantized direction of the nuclear magnetic moment µn is set by the angle θ regard-
less of the external field strength or the eigenstates at a given mF , giving a scaled energy
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B

|ψ+⟩ ,
|ψ−⟩ ,
µn

|+⟩ , |−⟩

θ

Figure 5: For the collapsed two-level subspace, Bloch-sphere representation of the Breit–
Rabi eigenstates of F̂z at a given mF (in red) and the real-space quantities including µn in
the dressed state from Fig. 2 associated with the eigenvalues (in black). Note that cos θ ≡
mF

I+S
, |±⟩ =

∣∣mS = ±1
2

〉
⊗
∣∣mI = mF ∓ 1

2

〉
, HmF

= −µnτ0 · ηaB − µeτ · Bt, |ψ±(mF , B)⟩ =
cos α

2
|±⟩ ± sin α

2
|∓⟩, and E±(mF , B) = −µn ηaB cos θ ∓ µeBt = −µn · ηaB − µe ·Bt.

−
(
1 + S

I

)
µnB cos θ. This expression reflects the effective coupling of the nuclear magnetic

moment to the applied field, providing a simple geometric picture for the nuclear contribution
to the total energy.

For the electron magnetic moment µe, the quantization is taken against or along the total
effective field Bt = ηγB+Bn, where ηγ = 1− γn

γe
= 1+O

(
1

1836

)
. The effective field also sets

the mixing angle of the eigenvectors. The resulting energy term ∓µeBt incorporates both
the applied field and the internal field from the nucleus. As one varies the external field, the
electron’s magnetic moment follows the effective field adiabatically, consistent with larger
level splittings and faster Larmor precession for the electron; adiabaticity holds when the
field is ramped slowly compared to the instantaneous eigenenergy gap. The γn

γe
factor in ηγ

due to hyperfine coupling may be related to the precessing quantization axis Bt.
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A Zeeman diagram and geometry for 1
1H, I = 1/2

Figure 6: Hyperfine Zeeman structure of 1
1H with I = 1

2
.

z µn

µe

1

z
µnµe

F = 1, mF = 0

z

µn

µe

−1

z

µn

µe

F = 0, mF = 0

Figure 7: Geometric interpretation of the electron and nuclear magnetic moments for 1
1H

with I = 1
2
in the limit B → 0. The z axis is taken along the direction of the magnetic flux

density B.
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B Zeeman diagram and geometry for 39
19K, I = 3/2

Figure 8: Hyperfine Zeeman structure of 39
19K with I = 3

2
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µn
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z

µn
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z

µn

µe

F = 1, mF = −1

z

µn µe

F = 1, mF = 0

z
µn

µe

F = 1, mF = 1

Figure 9: Geometric interpretation of the electron and nuclear magnetic moments for 39
19K

with I = 3
2
in the limit B → 0. The z axis is taken along the direction of the magnetic flux

density B.
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C Derivation of the Breit–Rabi solution

C.1 Hamiltonian and two-state basis

We consider an alkali atom with electron spin S = 1
2
and nuclear spin I in a static field of

magnitude B along the laboratory z axis. The Zeeman and hyperfine Hamiltonian reads

Ĥ = −ℏB
(
γeŜz + γnÎz

)
+ A

(
Ŝz Îz +

1
2
(Ŝ+Î− + Ŝ−Î+)

)
. (37)

We use γe = geµB/ℏ and γn = gIµN/ℏ with ge < 0. The subscripts + and − denote the
ladder operators, with + indicating raising and − indicating lowering. The total magnetic
quantum number mF = mS +mI is conserved.

For each fixed mF and S = 1
2
, the relevant subspace is two-dimensional with the product

basis

|+⟩ =
∣∣mS = +1

2

〉
⊗
∣∣mI = mF − 1

2

〉
, |−⟩ =

∣∣mS = −1
2

〉
⊗
∣∣mI = mF + 1

2

〉
. (38)

We now restrict our attention to each subspace corresponding to a fixed mF .

C.2 Matrix elements

The diagonal matrix elements follow from (37) because Ŝ+Î− + Ŝ−Î+ has no diagonal con-
tribution in the product basis

H++ = −ℏB
(
γe

1
2
+ γn(mF − 1

2
)
)
+ A

(
1
2
(mF − 1

2
)
)
, (39)

H−− = +ℏB
(
γe

1
2
− γn(mF + 1

2
)
)
− A

(
1
2
(mF + 1

2
)
)
. (40)

The off-diagonal elements arise from the flip-flop term. Using the standard ladder matrix
elements,

Ŝ+ |S,mS⟩ =
√
(S −mS)(S +mS + 1) |S,mS + 1⟩ , (41)

Î− |I,mI⟩ =
√
(I +mI)(I −mI + 1) |I,mI − 1⟩ , (42)

one obtains the equal off-diagonal elements as

χ ≡ H+− = H−+

=
A

2

〈
S,+1

2

∣∣ Ŝ+

∣∣S,−1
2

〉 〈
I,mF − 1

2

∣∣ Î− ∣∣I,mF + 1
2

〉
=
A

2

√
(I + 1

2
)2 −m2

F . (43)

For stretched states, χ = 0.
For convenience, we define the mean and half-difference of the diagonal elements as

M ≡ H++ +H−−

2
, d ≡ H++ −H−−

2
. (44)

With (39)–(40), one finds

M = −ℏγnmFB − A

4
, d = −ℏ

2
(γe − γn)B + A

2
mF . (45)

Note that d is related to the two Larmor frequencies.
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C.3 Eigenvectors and eigenvalues

The eigenvalue equation satisfied by the eigenvectors |ψ±⟩ and eigenvalues E± is

ĤmF
|ψ±⟩ = E± |ψ±⟩ . (46)

The Hamiltonian ĤmF
is expressed in the {|+⟩ , |−⟩} basis as the Hamiltonian matrix

HmF
=

(
H++ χ
χ H−−

)
. (47)

We define a mixing angle α via

tanα ≡ χ

d
. (48)

The normalized eigenvectors are

|ψ±⟩ = cos
α

2
|±⟩ ± sin

α

2
|∓⟩ . (49)

The corresponding eigenvalues are

E± =M ±
√
d2 + χ2 =

H++ +H−−

2
± 1

2

√
(H++ −H−−)2 + 4χ2. (50)

Introduce F+ ≡ I + S and define the dimensionless field parameter x (Eq. 17) by

x ≡ −ℏ(γe − γn)B

AF+

=
−geµB + gIµN

h∆ν
B, h∆ν = AF+. (51)

Using (43), (45), and (51) in (50), and recalling ℏγn = µNgI (Eq. 10), one obtains the
Breit–Rabi form:

E±(mF , B) = − h∆ν

2(2I + 1)
− µNgImFB ± h∆ν

2

√
1 +

2mFx

I + S
+ x2. (52)

The constant offset −h∆ν/[2(2I + 1)] can be dropped without affecting energy spacings or
eigenvectors.

D Reformulation of the mixing angle

Introduce the geometric angle θ via Eq. 18

cos θ =
mF

F+

, sin θ =

√
1−

(
mF

F+

)2

. (53)

Using (43)–(45), one gets

2δ = H++ −H−− = AF+

(
x+ cos θ

)
, 2χ = AF+ sin θ. (54)
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Substitution into (48) gives the compact relation

tanα =
sin θ

x+ cos θ
. (55)

Using Eq. 17

x ≡ ηγB

Bn

, (56)

we obtain

tanα =
Bn sin θ

ηγB +Bn cos θ
. (57)

Therefore, the angle α is the polar angle of Bt measured from the +z axis.
Note that

lim
x→0

α = θ. (58)

Substituting α→ θ into (49) gives the Clebsch–Gordan limit:

|ψ+(mF , 0)⟩ = cos
θ

2
|+⟩+ sin

θ

2
|−⟩ =

√
F+ +mF

2F+

|+⟩+

√
F+ −mF

2F+

|−⟩ , (59)

|ψ−(mF , 0)⟩ = − sin
θ

2
|+⟩+ cos

θ

2
|−⟩ = −

√
F+ −mF

2F+

|+⟩+

√
F+ +mF

2F+

|−⟩ . (60)

Equation (55) together with (49) ensures that the eigenvectors are the electron spinors
aligned and anti-aligned with the effective fieldBt of (20). The stretched states atmF = ±F+

satisfy sin θ = 0 and χ = 0, hence α→ 0 or π, and both |ψ+⟩ and |ψ−⟩ reduce to the unmixed
product states at the edges, which confirms internal consistency.

E Reformulation of the Hamiltonian into Pauli form

In the fixed-mF two-dimensional subspace HmF
= span{|+⟩ , |−⟩}, we define effective Pauli

operators (including the identity)

τ̂x = |+⟩⟨−|+ |−⟩⟨+| ,
τ̂y = −i

(
|+⟩⟨−| − |−⟩⟨+|

)
,

τ̂z = |+⟩⟨+| − |−⟩⟨−| ,
τ̂0 = |+⟩⟨+|+ |−⟩⟨−| . (61)

The operators act only within this reduced space and should be clearly distinguished from
the physical electron Pauli operators σ̂i, acting on the physical electron spin space spanned
by
{∣∣ms = +1

2

〉
,
∣∣ms = −1

2

〉}
. The four effective Pauli matrices are

τ0 =

(
1 0

0 1

)
, τx =

(
0 1

1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0

0 −1

)
. (62)
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Recall the Hamiltonian matrix in the constant-mF two-dimensional subspace

HmF
=

(
H++ χ
χ H−−

)
=

(
M + d χ
χ M − d

)
. (63)

It is convenient to recast the Hamiltonian into Pauli form. Introducing the vector

b = (χ, 0, d), (64)

one obtains
HmF

=M τ0 + b · τ . (65)

The vector b plays the role of a fictitious field, up to a constant factor, and turns out to be
Bt. Its direction defines the sharp axis of the electron spin

ne =
b

|b|
= (sinα, 0, cosα), tanα =

χ

d
. (66)

Diagonalization of the Hamiltonian is therefore immediate: the eigenvalues are E± =
M ±|b|, with eigenvectors |ψ±⟩ aligned or anti-aligned with ne. While the term M gives the
nuclear Zeeman energy, the term ±|b| gives the electron Zeeman energy and the hyperfine
coupling energy.

From Eq. 45 and Eq. 21, we find

M = −µn · ηaB, (67)

apart from a constant energy shift. Similarly, we have

b = −µeBt. (68)

Therefore, we obtain
HmF

= −(µnτ0) · (ηaB)− (µeτ ) ·Bt. (69)

F Dressed-state analogy of the Breit–Rabi block

A dressed state is an eigenstate of the interacting system that includes both the matter
degrees of freedom and the coupling that mixes the relevant bare states. The matter degrees
of freedom are the bare hyperfine basis states |ms,mI⟩, built from the electron spin S and
nuclear spin I. The interaction that mixes these bare states is the hyperfine flip–flop term,
together with the Zeeman shifts that produce differential energies for the basis states. The
resulting dressed state is therefore a coherent superposition of two bare configurations at
fixed mF = ms +mI .

In a fixed-mF subspace spanned by {|+⟩ , |−⟩}, the Hamiltonian can be written in Pauli
form HmF

=M τ0 + d τz + χ τx with the effective field b = (χ, 0, d), |b| =
√
d2 + χ2 .

For comparison, a driven two-level system in the rotating frame under the rotating-wave
approximation has

HRWA =
ℏ
2

(
−∆ σz + Ω σx

)
, ΩR =

√
∆2 + Ω2. (70)
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The following parameter map identifies the two problems

d = −ℏ
2
∆, χ =

ℏ
2
Ω, |b| = ℏ

2
ΩR, (71)

while the scalar offset M τ0 only shifts both energies equally and does not affect splittings
within the constant-mF subspace.

The term d τz plays the role of a detuning inside the fixed-mF block. The term χ τx is
the coherent coupling that mixes the two bare states. In an alkali hyperfine manifold, χ
originates from the flip-flop part of the contact hyperfine interaction A

2
(S+I− + S−I+). The

vector b is the Bloch-vector representation of the effective field that sets the quantization
axis for the spinor.
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