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Abstract—Photoacoustic tomography holds tremendous 

potential for neuroimaging due to its functional magnetic 
resonance imaging (fMRI)-like functional contrast and 
greater specificity, richer contrast, portability, open 
platform, faster imaging, magnet-free and quieter 
operation, and lower cost. However, accounting for the 
skull-induced acoustic distortion remains a long-standing 
challenge due to the problem size. This is aggravated in 
functional imaging, where high accuracy is needed to 
detect minuscule functional changes. Here, we develop an 
acoustic solver based on the boundary-element method 
(BEM) to model the skull and de-aberrate the images. BEM 
uses boundary meshes and compression for superior 
computational efficiency compared to volumetric 
discretization-based methods. We demonstrate BEM's 
higher accuracy and favorable scalability relative to the 
widely used pseudo-spectral time-domain method (PSTD). 
In imaging through an ex-vivo adult human skull, BEM 
outperforms PSTD in several metrics. Our work establishes 
BEM as a valuable and naturally suited technique in 
photoacoustic tomography and lays the foundation for 
BEM-based de-aberration methods.    

 
Index Terms—Photoacoustic tomography, Transcranial 

imaging, Boundary element method  

I. INTRODUCTION 

HOTOACOUSTIC tomography [1] (PAT)—a hybrid 
imaging modality that combines optical excitation with 

ultrasound detection, thus enabling optical absorption imaging 
at sub-millimeter resolution and centimeter-level depth—has 
been developed for several clinically relevant applications, such 
as small-animal whole-body imaging [2], human extremity 
imaging [3], and human breast imaging [4]. Recently, PAT of 
the human brain was shown to have promise as a 
complementary neuroimaging modality [5], [6]. However, one 
key challenge remains, namely, the effect of the human skull on 
photoacoustic (PA) waves.  

The adult human skull causes optical attenuation as well as 
acoustic attenuation and distortion, which degrade the PAT 
image quality [6]. While the optical and acoustic attenuation 
result in lower signal strength, the acoustic distortion severely 
aberrates the resulting transcranial images. This distortion is 
attributed to the starkly different acoustic properties of the skull 
relative to water or soft tissue, which results in the reflection 
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and refraction as well as varying time or phase delays of 
acoustic waves. In addition to compression waves, the skull also 
supports shear waves, which causes mode-conversion at the 
interfaces. Finally, the skull induces dispersion and frequency-
dependent attenuation, which broaden and attenuate wideband 
ultrasonic pulses. A PAT image reconstruction technique that 
can account for the skull is critical for developing PAT as a 
high-resolution neuroimaging technique.  

One of the major challenges in developing image 
reconstruction algorithms for transcranial PAT (T-PAT) is the 
large problem size. For instance, at a frequency of 1 MHz, the 
computational domain is of the order of hundreds of 
wavelengths in each dimension. Despite this, a few approaches 
based on the finite-difference time-domain (FDTD) [7] and 
more recently [8] (in a preprint), the pseudo-spectral time-
domain (PSTD) methods, respectively, accelerated on graphics 
processing units (GPUs), were employed for image 
reconstruction in three-dimensional (3D) T-PAT using an 
elastic model for the skull. However, coarse discretizations, 
necessitated by the large problem size and limited 
computational resources, result in low accuracy. Moreover, 
these methods scale poorly with the frequency. To improve the 
accuracy and overcome the staircasing effect in FDTD, the 
finite element method may be considered [9]. However, it is 
computationally infeasible in 3D due to the prohibitively large 
mesh size. To achieve high accuracy at a manageable and 
scalable computational cost, we propose to use the boundary 
element method (BEM) [10], a numerical technique for solving 
partial differential equations that can be formulated as boundary 
integrals.  

Amongst popular methods, BEM is best suited to T-PAT for 
several reasons. First, BEM uses boundary/surface meshes 
instead of volumetric meshes/grids, which results in a 
significant reduction in the problem size, especially since a 
large part (~75% by volume) of the computational domain is 
water. The use of a surface mesh along with compression 
schemes [11] also makes BEM more scalable than the 
previously mentioned approaches at higher frequencies. 
Second, unlike many time-domain methods, such as FDTD and 
PSTD, the error in the computed field in BEM does not depend 
heavily on the propagation distance (~10– 15 cm in PAT). 
Additionally, BEM is naturally suited to open-boundary 
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problems and does not require absorbing layers. Third, surface 
meshes in BEM accurately capture the geometry of the 
scatterers without suffering from staircasing. Furthermore, we 
can place sources and detectors anywhere, without needing to 
re-mesh or interpolate. Last, since we implement BEM in the 
frequency domain, we can naturally incorporate frequency-
dependent attenuation and dispersion, if necessary. For these 
reasons, BEM has been used in medical ultrasound to simulate 
transcranial [12] and transcostal [13] acoustic propagation. 

II. METHODS 

A schematic of T-PAT is depicted in Fig. 1a, which illustrates 
the source of illumination, the object being imaged (i.e., an 
adult human head including the scalp, skull, and brain), the 
ultrasound coupling medium (water), and a hemispherical 
ultrasonic detection surface. Since the most prominent optical 
absorbers in the brain at the wavelengths of interest 
(700–1100 nm) are oxy- and deoxy-hemoglobin [14] (see the 
left panel of Fig. 1b), blood vessels are the predominant features 
in PAT images, as shown in the top-right of Fig. 1a.  The skull 
causes reflection, refraction, and mode conversion of the 
incident PA waves at the brain-skull and skull-scalp interfaces, 
as depicted in the inset to the right of Fig. 1a. The intensity 
transmittances at the two interfaces [15] for representative skull 
and brain/scalp properties [6] are summarized in the center and 
right panels of Fig. 1b, respectively, which elucidate the various 
effects the skull has on acoustic waves. Next, we present the 
mathematical derivation of our BEM-based acoustic solver. 

A. Photoacoustic imaging: initial pressure generation 

Photoacoustic imaging is based on the generation of acoustic 
waves due to the absorption of light by tissue [1], i.e., the 
photoacoustic effect. The fractional volume expansion of tissue, 
𝑑𝑉/𝑉, due to light absorption, can be written as [16], 

𝑑𝑉

𝑉
= −𝜅𝑝 + 𝛽𝑇, (1) 

where 𝜅 (Paିଵ) and 𝛽 (Kିଵ) denote the isothermal 
compressibility and thermal coefficient of volume expansion, 
respectively, and 𝑝 and 𝑇 denote the rise in pressure and 
temperature, respectively. When conditions of thermal and 
stress confinement are satisfied (i.e., when the laser pulse 
duration is shorter than the thermal and stress relaxation times), 
the fractional volume expansion is negligible, and the local 
temperature rise due to the laser excitation gets converted to a 
pressure rise, 𝑝଴, which can be related to the optical absorption 
coefficient (𝜇௔; mିଵ) and the optical fluence (𝐹; J/mଶ) as 

𝑝଴ ∝ 𝜇௔𝐹. (2) 

The photoacoustic wave propagation due to the initial 
pressure distribution, 𝑝଴(𝒓), in a lossless, homogeneous, fluid 
medium at a frequency 𝑓 is governed by the inhomogeneous 
Helmholtz equation: 

(Δ + 𝑘ଶ)𝑝(𝒓) = −
2𝜋𝑗𝑓

𝑣ଶ
𝑝଴(𝒓), (3) 

where Δ is the Laplacian operator, 𝑘 is the wave number of 
acoustic waves in the medium at 𝑓, 𝑣 is the speed of sound in 
the medium, and 𝑝(𝒓) is the pressure at the location 𝒓. Here, we 

adopt the convention that the Fourier transform of the function, 
ℎ(𝑡), is given by 𝐻(𝑓) = ∫ ℎ(𝑡)𝑒ି௝ଶగ௙௧𝑑𝑡

ஶ

ିஶ
. 

B. Mathematical formulation of BEM 

Consider a regular closed surface Γ that partitions ℝଷ into an 
exterior region 𝑉ଵ and an interior region 𝑉ଶ. Each 𝑉௜ contains a 
homogeneous medium with a speed of sound and density of 𝑣௜ 
and 𝜌௜, respectively for 𝑖 = 1, 2. The exterior region, 𝑉ଵ, 
contains an acoustic source, 𝑠(𝒓), and 𝑉ଶ is source-free. In the 
case of T-PAT, 𝑉ଶ comprises the skull and 𝑉ଵ comprises 
everything outside the skull (i.e., soft tissue and water). Let 
𝑝ଵ: 𝑉ଵ → ℂ and 𝑝ଶ: 𝑉ଶ → ℂ be twice continuously differentiable 
functions that represent the pressure in 𝑉ଵ and 𝑉ଶ, respectively. 
Then, 𝑝ଵ and 𝑝ଶ satisfy the Helmholtz equation [17]. 

(Δ + 𝑘௜
ଶ)𝑝௜(𝒓) = 𝛿௜ଵ𝑠(𝒓),        𝒓 ∈ 𝑉௜,  𝑖 = 1, 2, (4) 

where 𝑘ଵ and 𝑘ଶ are the wave numbers of acoustic waves in 𝑉ଵ 
and 𝑉ଶ, respectively, at 𝑓, and 𝛿௜௝ denotes the Kronecker delta. 
We consider the following fundamental solution of the 
Helmholtz equation that satisfies the Sommerfeld radiation 
condition [18]. 

𝑔௜(𝒓, 𝒓ᇱ) =
𝑒௝௞೔|𝒓ି𝒓ᇲ|

4𝜋|𝒓 − 𝒓ᇱ|
,      𝒓 ≠ 𝒓′,       𝑖 = 1, 2, (5) 

 
Fig. 1| Schematic of T-PAT. (a) Schematic of T-PAT, which shows 
the laser pulse, the imaging target (a human head including the 
scalp, skull, and brain), the ultrasound coupling medium (water), 
and a hemispherical ultrasonic detection surface. Top-right: The 
imaging targets are primarily comprised of blood vessels since 
hemoglobin is the most dominant optical absorber in the 
wavelengths of interest. Right: The generated PA waves undergo 
reflection, refraction, and mode-conversion at the brain-skull and 
skull-scalp interfaces. Compression (longitudinal) waves and shear 
waves are shown using red and green arrows, respectively. (b) Left: 
Optical absorption coefficients of the most prominent optical 
absorbers in tissue. Center: Intensity transmittances of the 
transmitted compression and shear waves at the brain-skull 
interface, respectively. Right: Intensity transmittances of the 
transmitted compression waves for compression and shear wave 
incidence at the skull-scalp interface, respectively. 
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where |𝒓| denotes the magnitude of the vector 𝒓. Using Green’s 
identities, the solution can be expressed as [18], 

(−1)௜ାଵ𝑝௜(𝒓) = ර 𝑔௜(𝒓, 𝒓ᇱ)
𝜕𝑝̂௜(𝒓ᇱ)

𝜕𝒏ᇱ
𝑑𝛾ᇱ

 

୻

− ර 𝑝̂௜(𝒓ᇱ)
𝜕𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒏ᇱ
𝑑𝛾ᇱ

 

୻

+ 𝛿௜ଵ𝑝inc(𝒓),      𝒓 ∈ 𝑉௜,     𝑖 = 1, 2, 

(6) 

where 𝑑𝛾′ is a differential area element on the surface Γ in the 
primed coordinates, 𝜕/𝜕𝒏′ is the derivative (in the primed 
coordinates) along the outward-pointing normal of Γ, 𝑝̂௜ and 
𝜕𝑝̂௜/𝜕𝒏′ are the Dirichlet and Neumann traces of 𝑝௜ , 
respectively, on the surface Γ for 𝑖 = 1, 2, and 𝑝inc(𝒓) =

∫ 𝑔ଵ(𝒓, 𝒓ᇱ)𝑠(𝒓′)𝑑𝒓ᇱ 

௏భ
 is the incident field in 𝑉ଵ. This equation 

is known as the Green’s representation theorem for the 
Helmholtz equation, and it relates the pressure and its normal 
derivative on the surface Γ to the pressure everywhere in 𝑉௜. 
Similarly, on the surface, Γ, we have 

(−1)௜ାଵ𝐶(𝒓)𝑝̂௜(𝒓) = ර 𝑔௜(𝒓, 𝒓ᇱ)
𝜕𝑝̂௜(𝒓ᇱ)

𝜕𝒏ᇱ
𝑑𝛾ᇱ

 

୻

− ර 𝑝̂௜(𝒓ᇱ)
𝜕𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒏ᇱ
𝑑𝛾ᇱ

 

୻

+ 𝛿௜ଵ𝑝inc(𝒓),     𝒓 ∈ Γ,  𝑖 = 1, 2, 

(7) 

and 

(−1)௜ାଵ𝐶(𝒓)
𝜕𝑝̂௜(𝒓)

𝜕𝒏

= ර
𝜕𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒏

𝜕𝑝̂௜(𝒓ᇱ)

𝜕𝒏′
𝑑𝛾ᇱ

 

୻

− ර 𝑝̂௜(𝒓ᇱ)
𝜕ଶ𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒏 𝜕𝒏ᇱ
𝑑𝛾ᇱ

 

୻

+ 𝛿௜ଵ

𝜕𝑝inc(𝒓)

𝜕𝒏
,   𝒓 ∈ Γ,  𝑖 = 1, 2. 

(8) 

𝐶(𝒓) is a real function that depends on the geometry of Γ around 
𝒓. For a smooth surface, such as the ones we consider here, it 
evaluates to ½ [18]. 

Finally, by imposing continuity of pressure and particle 
velocity on both sides of the interface [15], we obtain the 
following relations between 𝑝̂ଵ(𝒓), 𝑝̂ଶ(𝒓), 𝜕𝑝̂ଵ(𝒓)/𝜕𝒏, and 
𝜕𝑝̂ଶ(𝒓)/𝜕𝒏 on Γ. 

𝑝̂ଵ(𝒓) = 𝑝̂ଶ(𝒓);  
1

𝜌ଵ

𝜕𝑝̂ଵ(𝒓)

𝜕𝒏
=

1

𝜌ଶ

𝜕𝑝̂ଶ(𝒓)

𝜕𝒏
,   𝒓 ∈ Γ. (9) 

Eqns. (7) – (9), constructed on Γ, can be solved for the 
Dirichlet and Neumann traces of the interior and exterior 
pressures on Γ, which can in turn be plugged into Eq. (6) to 
compute the pressure everywhere. This captures the 
fundamental idea of the boundary element method (BEM). 

To aid the solution of Eqns. (7) – (9), we discretize 𝑝̂ଵ(𝒓) and 
𝜕𝑝̂ଵ(𝒓)/𝜕𝒏, on the surface Γ, in a finite-dimensional space 
using a set of basis functions, {𝜙௜(𝒓)}௡ୀଵ

ே , defined on Γ, as 
follows: 

𝑝̂ଵ(𝒓) ≈ ෍ 𝑎௡𝜙௡(𝒓);
௡

  

𝜕𝑝̂ଵ(𝒓)

𝜕𝒏
≈ ෍ 𝑏௡𝜙௡(𝒓) ,

௡

𝒓 ∈ Γ, 
(10) 

where 𝑎௡, 𝑏௡ ∈ ℂ, 𝑛 = 1, 2, … , 𝑁 are the coefficients of the 
basis functions and ∮ 𝜙௡(𝒓)𝑑𝛾

 

୻
= 1. 

Substituting Eq. (9) into Eqs. (7) and (8) for 𝑖 = 2, and taking 
an inner product on both sides of Eqs. (7) and (8) for 𝑖 = 1, 2, 
(after substituting the basis expansion in Eq. (10)) with a set of 
testing functions, {𝜓௡(𝒓)}௡ୀଵ

ே  (which are chosen here to be the 
same as the basis functions), we get the following linear 
equations. 

𝒂

2
= 𝑉ଵ𝒃 − 𝐾ଵ𝒂 + 𝒂inc ;  

𝒃

2
= 𝐾ଵ

ᇱ𝒃 + 𝑊ଵ𝒂 + 𝒃inc; 

(11) 

𝒂

2
= −𝑉ଶ𝒃 + 𝐾ଶ𝒂  ; 

𝒃

2
 = −𝐾ଶ

ᇱ𝒃 − 𝑊ଶ𝒂. 

(12) 

Here, 𝒂 = [𝑎ଵ, 𝑎ଶ, … , 𝑎ே]் , 𝒃 = [𝑏ଵ, 𝑏ଶ, … , 𝑏ே]், and 𝑉௜, 𝐾௜, 𝐾௜
ᇱ, 

and 𝑊௜ (𝑖 = 1, 2) are the scaled single-layer, double-layer, 
adjoint double-layer, and hypersingular boundary potential 
operators, and are defined as follows: 

[𝑉௜]௠௡ =
𝜌௜

𝜌ଵ
ර ර 𝑔௜(𝒓, 𝒓ᇱ)𝜙௡(𝒓ᇱ)𝜓௠(𝒓)𝑑𝛾ᇱ𝑑𝛾

 

୻

 

୻

; 

[𝐾௜]௠௡ = ර ර
𝜕𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒓ᇱ
𝜙௡(𝒓ᇱ)𝜓௠(𝒓)𝑑𝛾ᇱ𝑑𝛾

 

୻

 

୻

; 

[𝐾௜
ᇱ]௠௡  = ර ර

𝜕𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒓
𝜙௡(𝒓ᇱ)𝜓௠(𝒓)𝑑𝛾ᇱ𝑑𝛾

 

୻

 

୻

; 

[𝑊௜]௠௡ = −
𝜌ଵ

𝜌௜
ර ර

𝜕ଶ𝑔௜(𝒓, 𝒓ᇱ)

𝜕𝒓𝜕𝒓′
𝜙௡(𝒓ᇱ)𝜓௠(𝒓)𝑑𝛾ᇱ𝑑𝛾

 

୻

 

୻

. 

(13) 

Here, [𝑀]௠௡ denotes the element in the 𝑚th row and the 𝑛th 
column of the matrix 𝑀. The vectors 𝒂inc and 𝒃inc are defined 
as 

𝒂௡
inc = ර 𝑝inc(𝒓)𝜓௡(𝒓)𝑑𝛾

 

୻

; 

𝒃௡
inc = ර

𝜕𝑝inc(𝒓)

𝜕𝒏
𝜓௡(𝒓)𝑑𝛾

 

୻

, 

(14) 

where [𝒎]௡ denotes the 𝑛th element of the vector 𝒎. This 
approach, termed the Galerkin method, has the advantage that 
it results in a symmetric system of equations and can be readily 
coupled with the finite element method [10], [19]. 

Eqs. (11) and (12) can be concisely written as 

ቂ
𝒂
𝒃

ቃ = ൬
1

2
𝐼 + 𝐴ଵ൰ ቂ

𝒂
𝒃

ቃ + ൤𝒂inc

𝒃inc൨ ; 

ቂ
𝒂
𝒃

ቃ = ൬
1

2
𝐼 − 𝐴ଶ൰ ቂ

𝒂
𝒃

ቃ , 

(15) 

where 𝐴௜ = ൤
−𝐾௜ 𝑉௜

𝑊௜ 𝐾௜
ᇱ൨ , 𝑖 = 1, 2 are scaled Calderón matrices. 

Note that the matrices ቀ
ଵ

ଶ
𝐼 + 𝐴ଵቁ and ቀ

ଵ

ଶ
𝐼 − 𝐴ଶቁ are idempotent 

[20]. Equating the right-hand sides of the two equations above 
yields 
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(𝐴ଵ + 𝐴ଶ) ቂ
𝒂
𝒃

ቃ = ൤𝒂inc

𝒃inc൨. (16) 

This formulation has the advantage that 𝐴ଵ + 𝐴ଶ is self-
regularizing, since 𝐴ଵ

ଶ = 𝐴ଶ
ଶ = 𝐼/4.  

C. Implementation of BEM 

We implemented all the operators described in Eq. (13) in 
MATLAB R2023b using the Gypsilab package [21]. We 
employed a continuous and piecewise affine set of basis 
functions defined on a triangular mesh for the fields on the 
surface. We used the same set of functions as our testing 
functions. We computed all the integrals using a three-point 
Gauss quadrature rule, chosen to optimize accuracy and speed. 
The integrals shown in Eq. (13) have a singularity when 𝒓 →
𝒓′. We deal with this by computing the singular part of the 
integral  over 𝒓 analytically, and then over 𝒓′ numerically using 
the same quadrature rule [21]. Additional care is needed, 
however, in evaluating the hypersingular operators (𝑊௜, 𝑖 =
1, 2), which are first converted into weakly singular integrals 
using integration by parts [17]. The matrices constructed in 
BEM are dense, which limits their applicability to large-scale 
problems due to memory constraints. To overcome this, matrix 
compression methods such as the fast multipole method 
(FMM) or hierarchical matrix compression are used [11]. Here, 
we use the fast and free memory method (FFM) [22] for 
assembling the operators, which has a linear storage 
complexity and quasilinear computation complexity for 
matrix-vector products. We apply Calderón preconditioning 
[23] and use the generalized minimum residual (GMRES) 
method [24] to solve the linear system of equations. 

 

III. RESULTS 

A. Benchmarking the BEM implementation 

To benchmark the accuracy of our BEM solver, we simulated 
the scattering of waves from a point source by a sphere with 
different acoustic properties. The background medium is 
assumed to be water and has a density and speed of sound of 
1000 kg/mଷ and 1500 m/s, respectively. The sphere is 
centered at the origin. It has a radius of 5 cm and a density and 
speed of sound of 1800 kg/mଷ and 3000 m/s, respectively. 
The size and properties of the sphere are chosen to mimic those 
of the human skull [6]. The simulation setup, overlaid with the 
field amplitude at a single frequency, is shown in Fig. 2a.  

A time-varying point source is placed at (−12, 0, 0) cm 
which radiates a Gaussian-modulated sinusoidal pulse (shown 
in Fig. 2b) of the form exp(−𝛼𝑓଴

ଶ(𝑡 − 𝑡଴)ଶ)sin(2𝜋𝑓଴𝑡), where 
𝛼 = 3.2, 𝑡଴ = 25 𝜇s, and 𝑓଴ = 0.05 MHz is the center 
frequency of the pulse. The pulse has a 6 dB bandwidth of 
approximately 0.033 MHz. We pick this frequency range 
because it allows us to simulate the problem at very fine 
discretizations, which are necessary to comprehensively study 
the trade-offs between run-time and accuracy. The field is 
recorded at 32 positions in a circle of radius 8 cm centered at 
the origin in the 𝑧 = 0 plane. The positions are chosen to be 
exactly on the grid in PSTD (at all discretizations) to avoid 
interpolation errors. 

To compute the analytical solution, we first expand the 
incident field from a point source outside a sphere of radius, 𝑎, 
at each frequency as an infinite summation of Legendre 
polynomials [25]. Then, we match the boundary conditions (see 
Eq. (9)) on both sides of the sphere and leverage the 
orthogonality of the Legendre polynomials to arrive at the 
following solution.  

𝑝out(𝑟, 𝜃) = ෍
(2𝑛 + 1)𝑗𝑘௢

4𝜋

𝑛௞𝑗௡(𝑘௢𝑎)𝑗௡′(𝑘௜𝑎) − 𝑛ௗ𝑗௡′(𝑘௢𝑎)𝑗௡(𝑘௜𝑎)

𝑛ௗ𝑗௡(𝑘௜𝑎)ℎ௡
(ଵ)

′(𝑘௢𝑎) − 𝑛௞𝑗௡′(𝑘௜𝑎)ℎ௡
(ଵ)

(𝑘௢𝑎)
 ℎ௡

(ଵ)(𝑘௢𝑟଴)ℎ௡
(ଵ)(𝑘௢𝑟)𝑃௡(cos(𝜃))

ஶ

௡ୀଵ

; (17) 

𝑝in(𝑟, 𝜃) = ෍
(2𝑛 + 1)𝑗𝑘௢

4𝜋

𝑛ௗℎ௡
(ଵ)

′(𝑘௢𝑎)𝑗௡(𝑘௢𝑎) − 𝑛ௗℎ௡
(ଵ)(𝑘௢𝑎)𝑗௡′(𝑘௢𝑎)

𝑛ௗ𝑗௡(𝑘௜𝑎)ℎ௡
(ଵ)

′(𝑘௢𝑎) − 𝑛௞𝑗௡′(𝑘௜𝑎)ℎ௡
(ଵ)(𝑘௢𝑎)

ℎ௡
(ଵ)(𝑘௢𝑟଴)𝑗௡(𝑘௜𝑟)𝑃௡(cos(𝜃)).

ஶ

௡ୀଵ

 (18) 

Here 𝑝out(𝑟, 𝜃) and 𝑝in(𝑟, 𝜃) are the scattered field outside the 
sphere and the field inside the sphere, respectively; 𝑛ௗ = 𝜌௜/𝜌௢ 
and 𝑛௞ = 𝑘௜/𝑘௢, where 𝜌௜ and 𝜌௢ are the densities of the sphere 
and the background medium, respectively, and 𝑘௜ and 𝑘௢ are the 
wave numbers in the sphere and the background medium; 𝑟଴ is 
the distance of the source from the origin, 𝑟 is the magnitude of 
the position vector of the evaluation point, and 𝜃 is the angle 
between the position vector of the evaluation point and the 

source; 𝑗௡, ℎ௡
(ଵ), and 𝑃௡ denote the 𝑛th order spherical Bessel 

function of the first kind, spherical Hankel function of the first 
kind, and Legendre polynomial, respectively, and (⋅)′ denotes 
the derivative of a function. After computing the solution at 
each frequency, we take an inverse Fourier transform, after 
appropriately weighting with the frequency components of the 
source function, to arrive at the time-domain waveform 
received by the detector. 

Since our BEM is formulated in the frequency domain, to 
compute the received pressure using BEM, we first transform 
the transmitted waveform to the frequency domain. We 
simulate a maximum frequency of 0.14 MHz and a signal 
duration of 1 ms, which results in a total of 140 frequency 
points. At each frequency, we use BEM to solve for the fields 
on the sphere, and therefore the field everywhere. We mesh the 
surface of the sphere by subdividing a triangular mesh of an 
icosahedron, which gives us a highly uniform mesh. The 
discretization level is changed by changing the degree of 
subdivision of the icosahedron mesh. For comparison, we 
simulated the same benchmark problem using PSTD. We used 
k-Wave [26], an open-source PSTD-based acoustic simulation 
toolbox, for the comparison. We simulated the benchmark 
problem within a 30 cm × 30 cm × 15 cm computational 
domain at various levels of discretization. We terminated the 
computational domain with a perfectly matched layer (PML) to 
ensure that waves are not spuriously reflected into the domain. 
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Finally, to verify the implementations, we plot the computed 
time-domain waveform at one of the detectors using BEM and 
PSTD, respectively, along with the analytical solution in Fig. 
2c, which shows good agreement between the three plots. 

We vary the discretization levels (number of points per 
wavelength in the mesh/grid) in BEM and PSTD and plot the 
run time of each method with its accuracy, calculated as the 
average of the relative root-mean-square error (RMSE) with 
respect to the analytical solution at all 32 positions, in Fig. 3a.  
This plot shows that while PSTD is faster than BEM at lower 
accuracies, BEM performs better at higher accuracies due to its 
favorable scalability. Further, although PSTD implemented on 
a GPU will be faster than BEM, it is not feasible beyond a 
certain problem size due to GPU memory limits. In Fig. 3b, we 
see that at a frequency of 0.1 MHz and for a given discretization 
level, BEM is always more accurate than PSTD. For the two 
cases encircled in Fig. 3a, which correspond to BEM and PSTD 
solutions with comparable accuracy and run time, we show the 
absolute errors in the scattered field for these two cases in the 
𝑧 = 0 plane at a single frequency (of 0.1 MHz), normalized to 
the maximum error in the two plots, in Figs. 3c and 3d, 
respectively. While BEM has a relatively uniform error in all 
directions, PSTD has a much higher error on the side of the 
sphere towards the source. This is because BEM analytically 
computes the incident field. Therefore, the error only exists in 
the scattered field, whereas PSTD propagates the source on the 
grid, thus incurring errors in both the incident and scattered 
fields. Finally, we also run the benchmark problem with a 
discretization of 𝜆/5 at higher frequencies of 0.2 MHz, 0.3 
MHz, 0.4 MHz, and 0.5 MHz and obtain similar relative 
RMSEs of 1.5%, 2.6%, 3.1%, and 2.6%, respectively. This 
shows that the method is accurate even at these higher 
frequencies.  

B. Experimental setup 

We experimentally demonstrated the application of BEM in 
T-PAT by correcting the aberrations in phantom images 
acquired through an ex-vivo human skull. We used a 3D PAT 
system similar to the one described here [4], where the 
measurements are obtained using four rotating arc-shaped 
ultrasonic transducer arrays. We used deionized water as the 
background medium and placed the skull in the imaging field 
of view. To prevent air from being trapped inside the ex-vivo 
skull, we immersed the skull in water overnight and pumped air 
out of it using a vacuum pump. We attached fiducial markers, 
comprising light-absorbing points, to the skull at locations that 
were identifiable on the X-ray computed tomography (CT) 
volume of the skull. We used these markers to co-register the 
CT volume with the PAT volume. Phantoms, made from black 
wires, were attached to custom-made 3D-printed mounts for 
repeatability, and positioned close to the inner surface of the 
skull one at a time. The phantoms were illuminated from inside 
the skull using diffuse 1064 nm laser light to improve the 
signal-to-noise ratio (SNR) of the measurements and to reduce 
the spurious background from the skull, which might confound 
our study on the effectiveness of de-aberration through the 
skull. Note that this illumination scheme differs from the 
illustration shown in Fig. 1, which aims to depict a schematic 
and describe the physics of in-vivo T-PAT. Previous studies 
have already demonstrated that illuminating from outside the 
skull results in sufficient SNR for T-PAT [6]. 
 

 
Fig. 2| Schematic of the BEM benchmarking problem. (a) Setup 
of the BEM benchmarking problem overlaid with the amplitude of 
the field at a single frequency. (b) Plot of the Gaussian-modulated 
sinusoidal pulse transmitted from the point source shown in (a). (c) 
Plot of the waveform received by a representative detector, 
computed using BEM and PSTD, overlaid on the analytical solution. 

 
Fig. 3| Benchmarking the BEM. (a) Plot of run time versus 
accuracy (relative RMSE) for PSTD and BEM. It shows that BEM 
outperforms PSTD at higher accuracies due to its favorable 
scalability. (b) Plot of discretization level versus accuracy (average 
relative RMSE) for BEM and PSTD at a single frequency. For a 
given accuracy level, BEM requires a lower discretization level than 
PSTD. Discretization level is defined as the number of points per 
wavelength (in water) in the mesh/grid. (c)-(d) Plots of the absolute 
error in the scattered field in the z = 0 plane obtained using (c) BEM 
and (d) PSTD, normalized to the maximum error in the two plots, 
respectively, for the two cases encircled in (a) at a frequency of 0.1 
MHz. While the error in the BEM solution is relatively uniform in all 
directions, the PSTD solution has a higher error on the side of the 
sphere towards the point source. 
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C. Transcranial PAT image reconstruction procedure 

The photoacoustic signals from the phantoms are acquired at 
a sampling frequency of 10 MHz and over a duration of 200 𝜇s. 
Based on the geometry of the detection surface and the 
placement of the phantoms, we truncated the signal to discard 
those parts that are not of interest. Then, we transformed the 
signal to the frequency domain and picked a minimum and 
maximum frequency of 0.2 MHz and 0.5 MHz, respectively. 
These values were chosen due to the relatively low SNR of the 
detector elements at lower frequencies and the increased 
attenuation and scattering of the skull at higher frequencies [6]. 
Since we are using an acoustic model of the skull, additional 
care is taken to only use those elements where the shear waves 
from the skull have less importance. To do this, we consider 
those detectors that subtend an angle less than 45∘ at the center 
of the reconstruction region with respect to the skull normal. 

We use iso2mesh [27], an open-source MATLAB package, to 
mesh the CT volume of the skull. To reduce the problem size, 
we only simulate the part of the skull that lies between the 
reconstructed region and the detector array. We ensure that the 
mean element size in the mesh at each frequency is close to 𝜆/5 
and that the maximum element size does not exceed 𝜆/2, where 
𝜆 is the wavelength in water. The resulting mesh has around 
10ସ elements at the lowest frequency and 10ହ elements at the 
highest one. To reconstruct an image, we treat the detectors as 
point sources that radiate the time-reversed (phase-conjugated 
in frequency domain) received waveform and record the 
pressure at the last time instant (by scaling the computed fields 
with the frequency response and summing up the fields at all 
the frequencies). We used a speed of sound and density in water 
of 1482 m/s and 1000 kg/mଷ, respectively, and in the skull of 
2800 m/s and 1800 kg/mଷ, respectively. The parameters for 
the skull were obtained by tuning the parameters within their 
respective physiological ranges to optimize image quality.  

For comparison, we also reconstructed transcranial images 
using PSTD [26]. The signals were low-pass filtered to 
0.5 MHz using a 6th order Butterworth filter, time-reversed, and 
specified as a Dirichlet boundary condition. We simulated a 
28 cm × 28 cm × 15 cm grid that was discretized at 0.5 mm, 
which is around one-sixth of a wavelength at 0.5 MHz. The 
pressure at the final instant was recorded as the reconstructed 
image. Finally, we display the maximum amplitude projections 
(MAPs) of the reconstructed volumes. 

To verify and preliminarily demonstrate the BEM-based 
reconstruction scheme, we conducted numerical phantom 
reconstruction experiments and report them in Appendix A. 
Further, the X-ray CT volume used for extracting the ex-vivo 
skull surface in this work was obtained at a resolution of 0.35 
mm. To test whether this resolution provides a sufficiently 
accurate surface mesh for BEM reconstruction, we study the 
impact of edge-modeling accuracy on BEM in Appendix B.  

D. Experimental results 

We acquired images of light-absorbing phantoms through an 
ex-vivo adult human skull. We also image the same phantoms 
without the skull and consider the resulting image, 
reconstructed using the universal back-projection algorithm 
(UBP) [28], to be the ground truth. Since we are using an 
acoustic-only model, we select those transducer elements that 

subtend a small angle at the center of the evaluation region with 
respect to the skull normal to reduce shear wave effects (see 
Section IIIC). Using these elements, we reconstruct images of 
the phantoms in the absence of the skull using UBP, and in the 
presence of the skull using UBP, PSTD, and BEM.  

The photographs of the phantoms, the maximum amplitude 
projections (MAPs) of their respective ground truths, UBP 
images (using the selected transducers) in the absence of the 
skull, and UBP, PSTD, and BEM images in the presence of the 
skull are presented in Fig. 4a. From these images, we observe 
that the BEM images are the closest to the ground truth, 
especially in terms of recovering true features and mitigating 
background artifacts. This is also seen in the line profiles 
extracted from the phantom images, as shown in Fig. 4b. To 
quantify the improvement in the sharpness as well as the 
background in the profiles, we compute their respective 
standard deviations (treating each profile as a probability 
density function), and obtain a value of 3.4, 3.7, and 3.2 mm for 
the UBP, PSTD, and BEM images of phantom A with the skull, 
respectively, and a value of 3.5, 3.7, and 3.3 mm for the UBP, 
PSTD, and BEM images of phantom B with the skull, 
respectively. In contrast, the UBP images of phantoms A and B 
without the skull have respective standard deviations of 3.1 and 
3.3. The T-PAT images reconstructed using BEM also result in 
the least positional error. We show this in Fig. 4c by overlaying 
the 𝑥-𝑧 projections of the envelopes of the reconstructed T-PAT 
images (green) of a line target on its UBP image in the absence 
of the skull (magenta). Finally, we quantify the performance of 
each method using five metrics (averaged over the three 
phantoms)—correlation coefficient, structural similarity index 
measure [29] (SSIM), contrast-to-noise ratio (CNR), 
displacement, and run time—and present them in Fig. 4d. 
Correlation coefficient and SSIM are computed using the UBP 
image in the absence of the skull as a reference. Fig. 4d shows 
that BEM outperforms the other method in terms of all five 
metrics, except run time, thus demonstrating its superior 
performance. For clarity, we also present the metrics in Table I. 

E. BEM execution time and computational complexity 

All simulations were conducted using MATLAB R2023b, 
deployed on a workstation configured with an Intel Core i9-
13900KS processor (3.2 GHz), 4 × 48 GB DDR5 RAM (5200 
MHz), and an NVIDIA GeForce RTX 4090 GPU. The 
operating system used was Windows 11 Pro 23H2. The primary 
steps in BEM-based transcranial PAT image reconstruction are 
meshing, operator assembly, incident field computation, 
solving the linear system, and field evaluation. The first two 
steps can be performed once for reconstructing a batch of 
phantom images, provided the geometry and acoustic properties 
of the skull and the surrounding medium do not change, which 
gives BEM an additional edge over methods like FDTD and 
PSTD when reconstructing multiple images. Generating the 
mesh takes less than a minute at the highest frequency. The 
operators are assembled using the FFM method, which has a 
storage complexity of 𝒪(𝑁) and a computational complexity 
for matrix-vector multiplication of 𝒪(𝑁 logଶ(𝑁)), where 𝑁 is 
proportional to the number of nodes in the mesh. The operator 
assembly at 0.2 MHz and 0.5 MHz takes around 2 minutes and 
20 minutes, respectively. Incident field computation for each 
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phantom at 0.2 MHz and 0.5 MHz takes 1 minute and 6 
minutes. Each iteration of GMRES at 0.5 MHz takes half a 
second, and it takes close to 2.5 minutes to reach a relative error 
residual of less than 10ିଷ. Evaluating the field for each 
phantom at 0.2 MHz and 0.5 MHz takes 10 seconds and 40 
seconds, respectively. Overall, the reconstruction of one 
phantom image using BEM takes close to 2 hours (113 
minutes). However, reconstruction time per phantom can be 
lower for a batch of phantoms since the operator assembly, 
which is the most expensive step, is a one-time cost, provided 

the geometry and acoustic properties of the skull and the 
surrounding medium do not change. For instance, the operator 
assembly and mesh generation steps take 68 minutes out of a 
total reconstruction time of 113 minutes for a single image. 
Therefore, by reconstructing a batch of five images, the 
reconstruction time for a single image can be brought down to 
58.5 minutes. In comparison, reconstructing the image of one 
phantom using PSTD takes around 1 hour. 

IV. DISCUSSION 

In this paper, we presented a BEM-based acoustic solver for 
image reconstruction in T-PAT. Our method, which is based on 
BEM, has several computational advantages over the widely 
used FDTD/PSTD and FEM-based methods, primarily due to 
the use of surface meshes in BEM as opposed to volumetric 
grids and meshes in FDTD/PSTD and FEM, respectively. We 
demonstrated the computational feasibility of BEM at high 

 
Fig. 4| T-PAT of phantoms through an ex-vivo skull using BEM. (a) Photographs, respective ground truths (UBP images in the absence of 
the skull reconstructed using all transducer elements), UBP images in the absence of the skull reconstructed using the selected transducer 
elements, and images through the skull reconstructed using UBP, PSTD, and BEM of the phantoms. (b) Plots of the line profiles extracted from 
the respective images of the two phantoms in (a). (c) Overlays of the 𝑥-𝑧 projections of the T-PAT images of a line target obtained using 
UBP/PSTD/BEM, respectively, shown in green, on the UBP images without the presence of the skull, shown in magenta. This representation 
shows that the images reconstructed using BEM have the least displacement. (d) Quantitative comparison of UBP, PSTD, and BEM using five 
metrics (averaged over the three phantoms): correlation coefficient, SSIM, CNR, displacement, and run time. The comparison shows that BEM 
outperforms PSTD and UBP in all the metrics except run time. 

TABLE I 
TABULATED QUANTITATIVE METRICS PRESENTED IN FIG. 4D 

METRIC UBP PSTD BEM 
Correlation coefficient 0.35 0.22 0.49 

SSIM 0.19 0.21 0.32 
CNR 2.75 3.80 6.57 

Displacement (mm) 1.88 0.98 0.75 
Run time (mins) < 1 59 113 
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accuracies for practical-sized problems, whereas PSTD is 
limited by its poor scalability. While we chose to compare our 
BEM implementation with PSTD due to its popularity in PAT, 
we refer the readers to [12] for a more comprehensive 
comparison of different computational techniques for 
transcranial acoustic propagation. For T-PAT of phantoms 
through an ex-vivo human skull, we showed that BEM 
qualitatively and quantitatively outperformed UBP and PSTD, 
except in terms of run time. Our work demonstrates the natural 
suitability of BEM to PAT and paves the way for the 
development of BEM-based image reconstruction approaches 
in several applications of PAT. It also facilitates clinically 
relevant applications of T-PAT such as human brain function 
imaging, stroke and tumor diagnosis and monitoring, and 
management of traumatic brain injuries [30]–[32]. 
It is interesting to note that although Fig. 3 shows that BEM is 

more computationally efficient than PSTD for high accuracies, 
in the experimental demonstration in Fig. 4, BEM is slower than 
PSTD. While this may seem counterintuitive, it is due to the 
higher accuracy that BEM was set up for, which would have 
been inconveniently expensive to achieve with PSTD. For the 
reconstructions in Fig. 4, it was stated that the discretization 
levels for BEM and PSTD were 5 and 6, respectively. From Fig. 
3b, we see that this corresponds to an error of 10% for PSTD 
and 1% for BEM. However, if we use PSTD to obtain the 1% 
error, we see from Fig. 3b that it would necessitate a 
discretization level of 16, which would be extremely 
computationally expensive. Furthermore, this difference keeps 
increasing as higher levels of accuracy are sought. 
A crucial advantage that BEM has compared to other methods, 

such as PSTD or FDTD, is that the run time of BEM in T-PAT 
can be significantly optimized by batch reconstructing multiple 
images. This is because the boundary operator assembly, which 
is the most expensive step in BEM, can be computed once for 
multiple images, provided the geometry and the acoustic 
properties of the skull and the surrounding medium remain the 
same. This advantage is particularly important in the context of 
functional imaging, where multiple images are reconstructed 
across several ON-OFF cycles of functional stimuli [5]. For the 
same reason, BEM also lends itself naturally to iterative 
reconstruction schemes [33], where actions of the precomputed 
boundary operators can be evaluated accurately and efficiently 
for any number of iterations. 
The utility of BEM in PAT is not limited to the problem of T-

PAT of the human brain. Detecting hemodynamic changes in 
response to functional activation in small-animal brains is 
critical to preclinical studies in neuroscience [4]. At the higher 
ultrasonic frequencies (> 5 MHz) typically employed in small-
animal PAT [2], it is pertinent to correct for the aberrations that 
small animal skulls cause to optimize image quality. Our 
approach can be used to model the small-animal skull, 
particularly in the context of noninvasive imaging. Moving 
beyond skull aberrations, a common assumption in PAT is that 
the acoustic properties of soft tissue and water are the same, 
which justifies the use of image reconstruction methods such as 
UBP. In several cases, such as small-animal whole-body PAT 
[2] and human breast PAT [4], the dual speed-of-sound (SoS) 
UBP method [2], which assigns different SoS values to water 
and tissue, is commonly used to improve image quality. 

However, this method does not account for refraction at the 
water-tissue interface. In such cases, BEM may be used for 
more accurate modeling of acoustic propagation, thus 
optimizing the reconstructed image quality in a computationally 
feasible manner. 
Since this is a preliminary study demonstrating the feasibility 

and suitability of BEM to T-PAT, a few simplifications were 
made to the experimental setup, which can be improved upon 
in the future to better mimic the in-vivo situation. In future 
studies, illumination from outside the skull can be considered 
with more complex light-absorbing phantoms present both 
inside and outside the skull. This is to simulate the complex 
scalp and cortical vasculatures that are present in vivo, where 
the cortical signals are much weaker than those from the scalp. 
The strong signals from the scalp and their reflection from the 
skull present significant challenges to recovering the weak 
cortical signals in in-vivo T-PAT and will be considered in 
future studies. 
A few improvements can also be made to enhance the 

performance of BEM for T-PAT. The development of faster 
and more parallelizable BEM matrix compression and 
acceleration techniques is one of the most active research topics 
in BEM [35]–[41]. In our work, we used the fast and free 
memory method (FFM) [22], which builds on the existing and 
popular fast multipole method (FMM) and the hierarchical 
matrix (H-matrix) method [11], to achieve a linear storage 
complexity compared to the quasi-linear complexity of the 
aforementioned methods. Notably, we compared our BEM 
implementation with the one in [42], which uses H-matrices for 
matrix compression, and found that our implementation 
outperformed it in terms of accuracy and run time for the 
benchmark problem in Section III A at frequencies of 0.2 MHz 
and 0.5 MHz, respectively. Similarly, efforts are also underway 
to implement methods such as FMM and H-matrices on modern 
computing architectures such as graphics processing units 
(GPUs), which will further boost their performance [34], [43]–
[45].  
The current BEM solver does not account for acoustic 

attenuation and heterogeneities within the skull. Frequency-
dependent acoustic attenuation and dispersion in the skull can 
be readily incorporated into our method since it is formulated 
in the frequency domain. The heterogeneity of the skull can also 
be partially considered by using a three-layer approach that 
models the skull as three homogeneous layers comprising a 
trabecular bone layer sandwiched between two cortical bone 
layers. Certain formulations of BEM exist, such as the dual-
reciprocity BEM and the analog equation method, which 
transform domain integrals into boundary integrals numerically 
and therefore can deal with inhomogeneities in the medium 
[10]. However, these methods come at the cost of mathematical, 
implementation, and computational complexity. Another 
approach for dealing with inhomogeneities is to use a hybrid 
FEM-BEM approach [46], where FEM is used to model the 
inhomogeneous medium (skull) and BEM is used to model the 
homogeneous (and typically unbounded) exterior domain. 
However, combining the two techniques increases the 
computational cost compared to BEM and may require extra 
care to solve, particularly in cases where interior resonances 
exist [47]. Nevertheless, the accurate estimation of skull 
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properties from adjunct images such as X-ray CT remains an 
open quest [48]. Finally, modeling shear wave effects in the 
skull is another promising direction that will significantly 
improve the de-aberrated image quality [49], [50]. 

APPENDIX A: NUMERICAL PHANTOM 

RECONSTRUCTION EXPERIMENTS 

We conducted numerical phantom reconstruction tests to 
evaluate the effect of various parameters on BEM-based T-PAT 
image reconstruction. First, we performed a forward simulation 
using PSTD with a fine discretization of 𝜆/20 (on a smaller grid 
than the one used for the experimental phantom reconstruction 
in Fig. 4) at the highest considered frequency of 0.5 MHz to 
ensure high accuracy. Then, we added white Gaussian noise to 
the signals with a signal-to-noise ratio of 20 dB and 
reconstructed images of the target using BEM and UBP, 
respectively. A schematic of the simulation is shown in Fig. 5a. 
A cross-shaped initial pressure target (2.4 cm × 2.4 cm size) is 
propagated through a homogeneous hemispherical shell 
centered at (0, 0, 2) cm with a radius, speed of sound, and 
density of 4 cm, 3000 m/s, and 1800 kg/m3, respectively, with 
water as the background medium. A hemispherical detection 
surface centered at (0, 0, 0) cm of radius 5.5 cm surrounds the 
hemispherical shell.  

We test the effect of the shell thickness on the reconstruction. 
To do this, we perform forward simulations for shell 
thicknesses of 3 mm, 5 mm, and 7 mm, respectively. The 
respective reconstructed images using BEM and UBP for 
different skull thicknesses are shown in Fig. 5b, and it shows 
that the BEM image reconstruction scheme can correct the 
aberrations induced by the hemispherical shell for all the 
considered thicknesses. However, since we did not use an 
iterative reconstruction scheme, there is a slight degradation in 
the BEM-reconstructed images with increasing thickness, 
likely due to the worsening of the propagation operator 
conditioning. This is linked to the fact that the skull reflects 
(partially within the critical angle and totally beyond it) the 
acoustic waves away from the detection surface, which results 
in either lossy or no detection at different angles (the critical 
angle at the water-skull interface for the given acoustic 
properties is 30∘). Additionally, we also studied the effect of 
the speed of sound and density mismatch on the reconstructed 
images and found that the correlation coefficient of the image 
reconstructed with a speed of sound mismatch of 10% with the 
image reconstructed using the true parameters was around 0.88, 
whereas a 10% density mismatch resulted in a change in the 
correlation of less than 0.01. 

APPENDIX B: EFFECT OF EDGE-MODELING 

ACCURACY ON BEM 

The BEM-reconstructed images shown in Fig. 4 were 
obtained by extracting the skull shape from an X-ray CT scan 
of the ex-vivo skull acquired at a resolution of 0.35 mm. To 
evaluate whether this resolution affects the accuracy at a 
frequency of 0.5 MHz (~3 mm wavelength in water), we make 
use of the simulation setup in Appendix A. The hemispherical 
shell volume is originally at a discretization of 0.15 mm. We 
reconstruct images of the cross-target using BEM by extracting 
the hemispherical shell surface from volumes discretized at 
0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm, respectively, and show 
them in Fig. 6. We also compute the correlation coefficient and 

 
Fig. 5| (a) Schematic of the 3D simulation setup. (b) Images of a 
simulated cross-target (of size 2.4 cm × 2.4 cm), which were imaged 
through hemispherical shells of thicknesses ranging from 3 mm to 
7 mm, reconstructed using UBP and BEM, respectively. 

 
Fig. 6| BEM-reconstructed images of a cross-target through a 
hemispherical shell obtained by extracting the shell surface at a 
discretization of 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm, 
respectively. The correlation coefficients and relative RMSEs of the 
images obtained with a discretization of 0.3 mm and above are 
computed with respect to the image obtained at 0.15 mm.  
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relative RMSE for the images acquired at 0.3 mm and above 
relative to the baseline image acquired at 0.15 mm and present 
them on top their respective images in Fig. 6. We see from here 
that the image corresponding to the 0.3 mm discretization 
(which is the closest to the resolution of the X-ray CT image) is 
very close to the baseline image, thus corroborating that the 
resolution of the X-ray CT volume of the ex-vivo skull is 
sufficient for the frequencies under consideration. However, we 
also observe a deterioration in the image quality at a 
discretization of 0.6 mm, which worsens significantly at 1.2 
mm. This suggests that it would be necessary to obtain the skull 
shape at a finer resolution to maintain the accuracy at higher 
frequencies. 
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