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Abstract—Transcranial photoacoustic computed 
tomography presents challenges in human brain imaging 
due to skull-induced acoustic aberration. Existing full-wave 
image reconstruction methods rely on a unified elastic 
wave equation for skull shear and longitudinal wave 
propagation, therefore demanding substantial 
computational resources. We propose an efficient discrete 
imaging model based on finite element discretization. The 
elastic wave equation for solids is solely applied to the 
hard-tissue skull region, while the soft-tissue or coupling-
medium region that dominates the simulation domain is 
modeled with the simpler acoustic wave equation for 
liquids. The solid-liquid interfaces are explicitly modeled 
with elastic-acoustic coupling. Furthermore, finite element 
discretization allows coarser, irregular meshes to conform 
to object geometry. These factors significantly reduce the 
linear system size by 20 times to facilitate accurate whole-
brain simulations with improved speed. We derive a 
matched forward-adjoint operator pair based on the model 
to enable integration with various optimization algorithms. 
We validate the reconstruction framework through 
numerical simulations and phantom experiments. 

 
Index Terms—Domain Decomposition, Finite Element 

Method, Full-wave Reconstruction, Acoustic-elastic 
coupling, Transcranial imaging, Photoacoustic 
tomography, Skull deaberration 

I. INTRODUCTION 

KULL-induced acoustic aberration is one of the major 

obstacles in translating photoacoustic computed 

tomography (PACT) to noninvasive human brain imaging. The 

skull’s presence introduces substantial distortions in the 

photoacoustic signal through attenuation, aberration, 

reverberation, and mode conversion [1]–[4]. Since the skull is 

a thick and solid medium where longitudinal and shear waves 

simultaneously propagate, we need to consider its elastic 

properties during image reconstruction. Neglecting shear waves 

can lead to image artifacts that significantly deteriorate the 

image quality [5]. 
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Existing PACT reconstruction methods that account for the 

elastic properties of the skull can be broadly classified into three 

categories: ray-based, time reversal, and model-based 

optimization methods. Ray-based methods approximate the 

acoustic medium as homogeneous layers, backpropagating the 

waves in each layer individually [6]. These methods are 

computationally efficient but assume a single-layer 

homogeneous skull model without reverberation. Time reversal 

(TR) methods exploit the wave equation’s TR property by 

reversing the recorded acoustic signals in time [7]–[9]. These 

techniques can accommodate arbitrary detection geometries 

and heterogeneous media. However, finite sampling or limited 

measurement view can render the inverse problem ill-posed. In 

such situations, model-based optimization methods are 

commonly employed [10]–[13]. Because they provide a 

flexible framework for regularization, these methods hold 

potential to mitigate the effects of data incompleteness or other 

physical factors. 

In optimization-based reconstruction methods, it is often 

necessary to incorporate a forward and adjoint model to 

compute the gradients of the data fidelity terms. For transcranial 

PACT imaging, a discrete forward-adjoint pair based on the 

finite-difference time-domain (FDTD) method has been 

proposed and demonstrated notable deaberration effects for 

transcranial images [10], [14]. Nevertheless, the FDTD 

approach employs a uniform Cartesian grid across the entire 

simulation domain, which restricts its adaptability to irregular 

skull boundaries. Although increasing grid resolution can 

mitigate the issue, it comes at the expense of increased 

computational cost. More recently, a continuous forward-

adjoint pair was introduced in the form of analytical partial 

differential equations [13]. While initially demonstrated within 

the framework of the pseudo-spectral time domain (PSTD) 

method, the continuous adjoint is independent of discretization. 

However, both the discrete adjoint in [14] and the continuous 

adjoint in [13] use a unified linear isotropic, lossy, and 
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heterogeneous stress-velocity elastic wave equation to model 

the entire domain, with the fluid region represented by a shear 

wave velocity of zero. In such unified models, velocity 

continuity is implicitly assumed throughout the entire domain 

[15]. Nonetheless, for the boundary between the inviscid fluid 

and solid, only the normal component of velocity remains 

continuous across the interfaces. Consequently, a unified model 

does not satisfy the correct interface condition and may 

compromise accuracy [16]. Moreover, the unified configuration 

is inefficient, as the majority of the simulation domain consists 

of soft tissue and coupling medium, which can be more 

efficiently modeled by the acoustic equation.  

To address the limitations, we propose a discrete forward-

adjoint operator pair for transcranial PACT based on the 

ssssfinite element method (FEM). The FEM is a well-

established technique in seismology, known for its ability to 

provide accurate solutions given the complex earth structures 

and convenience for multiphysics simulation [17], [18]. In this 

work, we divide the simulation domain into two regions: a fluid 

region and a solid region. The solid region is characterized by 

the displacement elastic wave equation, while the fluid region 

is described by the acoustic equation, which requires fewer 

unknowns. By incorporating acoustic-elastic coupling, we 

explicitly consider the fluid-solid interfaces at the boundaries 

between the skull and the surrounding soft tissue. This domain 

decomposition approach not only enables more accurate 

modeling of the boundary but also fundamentally reduces the 

number of degrees of freedom (DOF) associated with each 

node. In addition, the FEM discretization allows the use of a 

coarser, unstructured, and variable-size mesh that adapts to the 

skull geometry, decreasing the number of nodes. These two 

aspects collectively lead to a remarkable reduction in the total 

number of unknowns in the linear system. This approach 

demonstrates the potential for enhancing reconstruction speed 

while maintaining accuracy.  

Our approach is different from commercial FEM software in 

key three aspects: 1) To the best of our knowledge, no 

commercial FEM tools currently provide a numerically 

matched adjoint operator specifically for transcranial PACT 

image reconstruction; 2) Our method is based on an open-

source package, thereby eliminating the need for costly 

subscriptions; 3) The open-source nature of our software 

enhances adaptability, allowing users to tailor the code for 

specific applications, unlike commercial products, which often 

have limited customization capabilities. 

This paper is organized as follows: In Section II, we briefly 

describe the imaging physics and the related wave equations for 

transcranial PACT. Then we derive the explicit formulation of 

the discrete forward and adjoint operators. In Section III, we 

validate our implementation and demonstrate its feasibility 

through a comparative study with an established FDTD 

forward-adjoint operator pair [14]. To illustrate the practical 

applicability of our method, we apply it to phantom data. 

Finally, we end the paper with a conclusion and discussion of 

the merits and limitations of our method in Section IV. 

II. THEORY 

The physics for transcranial photoacoustic wavefield 

propagation is described below in its continuous and discrete 

forms. Here, we treat the soft tissue and the coupling medium 

as a lossless, inviscid, and compressible fluid, and the skull as 

an isotropic, heterogeneous solid medium. We employ an 

empirical diffusive absorption model to account for the acoustic 

attenuation of the skull [14], [19]. This assumption is valid for 

the approximately monochromatic photoacoustic signals in the 

MHz frequency range for transcranial imaging [19]–[21]. 

Throughout the derivations, bold lowercase symbols represent 

vectors, while uppercase symbols denote tensors or matrices. 

While we present the derivations in two dimensions (2D) for 

simplicity, they can be readily extended to three-dimensional 

(3D) cases. 

A. Transcranial photoacoustic wavefield propagation: 
continuous formulation 

A typical simulation for transcranial PACT involves three 

regions (see Fig. 1): the fluid region 𝛺𝑓, representing soft tissue 

and coupling medium; the solid region 𝛺𝑠, corresponding to the 

skull, and the perfectly matched layer (PML) 𝛺𝑃𝑀𝐿 , applied to 

the outer boundary of the whole domain for wave truncation. 

To facilitate accurate and efficient modeling, we adopt a 

domain decomposition approach that independently models the 

physics within each domain. Consequently, we formulate three 

sets of coupled equations: the acoustic equation governing the 

fluid domain, the elastic equation governing the solid domain, 

and the modified acoustic equation governing the PML. 

In the fluid domain, 𝛺𝑓 , the photoacoustic wavefield 

propagation is governed by the lossless acoustic equation [14]: 

 

1

𝑐𝑓
2

𝜕2𝑝

𝜕𝑡2
− 𝛻2𝑝 = 0, (1) 

 

subject to the initial conditions at location 𝒓 ∈ ℝ2, 

 

𝑝(𝒓, 𝑡)|𝑡=0 = 𝑝0, (2) 

𝜕𝑝(𝒓, 𝑡)

𝜕𝑡
|𝑡=0 = 0, (3) 

 

 
 

Fig. 1.  Domain decomposition in transcranial PACT simulation.  𝛺𝑓 

represents the fluid region (blue) for soft tissue and coupling medium; 
𝛺𝑠 corresponds to the solid region (yellow) for skull; 𝛺𝑃𝑀𝐿 denotes the 

PML (gray); 𝜕𝛺  describes the solid-fluid interface for the solid-liquid 
boundary; 𝒏 is the outward surface normal of the skull boundary. 
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where 𝑝 is the acoustic pressure, 𝑐𝑓 is the speed of sound (SOS) 

in the fluid region, and 𝑝0 is the initial pressure distribution. 

In the solid domain, 𝛺𝑠, the wavefield can be described by 

the heterogeneous and isotropic linear elastic equation [22], 

 

𝜌𝑠

𝜕2𝒖

𝜕𝑡2
+ 𝛼

𝜕𝒖

𝜕𝑡
= 𝛻 ∙ (ℂ:

1

2
(𝛻𝒖 + (𝛻𝒖)†) ) , (4) 

 

where 𝒖 is the displacement vector, 𝜌𝑠 is the density of the solid 

material, ℂ is the stiffness tensor, and 𝛼  is the frequency-

independent attenuation coefficient. The notation :  and  † 

denotes the inner product of two second-order tensors and 

matrix transpose, respectively. 

For an isotropic material, the stiffness tensor reduces to the 

following expression in terms of the shear and longitudinal 

wave speeds, 𝑐𝑠  and 𝑐𝑝, respectively, 

 

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), (5) 

 

where 𝛿  is the Kronecker delta. The Lamé constants 𝜆 and 𝜇 

are related to the speed of sound as 

 

𝜆 = 𝑐𝑝
2𝜌𝑠 − 2𝑐𝑠

2𝜌𝑠,  (6) 

𝜇 = 𝑐𝑠
2𝜌𝑠. (7) 

 

Equations (1) and (4) are coupled through the boundary 

conditions along the interface 𝜕Ω  [22]. The coupling is 

reflected in the continuity of the normal component of 

displacement acceleration from solid to liquid as  

 

𝒏 ∙
1

𝜌𝑓

∇𝑝 = −𝒏 ∙
𝜕2𝒖

𝜕𝑡2
  on 𝜕𝛺, (8) 

 

and the continuity of pressure from liquid to solid as 

 

(ℂ:
1

2
(𝛻𝒖 + (𝛻𝒖)†) ) ∙ 𝒏 = −𝑝𝒏 on 𝜕𝛺, (9) 

 

where 𝒏 is the outward surface normal at the skull boundary.  

In addition, we apply a PML at the outermost boundary of 

the whole domain, 𝛺𝑃𝑀𝐿 , to simulate the free-field condition by 

exponentially attenuating propagating waves according to [23]. 

The modified acoustic wave equations in the PML are given as 

 

1

𝑐𝑓
2

𝜕2𝑝

𝜕𝑡2
+ 𝜒

𝜕𝑝

𝜕𝑡
+ 𝜅𝑝 − ∇2𝑝 − ∇ ∙ 𝒘 = 0, and (10) 

𝜕𝒘

𝜕𝑡
+ 𝑨𝒘 + 𝑩∇𝑝 = 𝟎, (11) 

 

where 𝒘 is the vector-valued auxiliary variable. The definition 

of the PML-related properties 𝑨,𝑩, 𝜒, 𝜅 can be found in [23], 

and the attenuation terms related to their 𝛾 vanish in our 2D 

model. When 𝑨,𝑩, 𝜒, 𝜅 are set to zero, (10–11) simplify to the 

original acoustic wave equation in (1). 

B. Transcranial photoacoustic propagation: discrete 
formulation 

To solve the coupled problem with FEM, we need to derive 

the weak form for (1–11) by multiplying them with test 

functions and integrating by parts over the problem domain 

[24]. The variational form of the elastic wave equation after 

applying the Gauss-Green theorem is given as 

 

∫ 𝜌𝑠𝝍 ∙
𝜕2𝒖

𝜕𝑡2
𝑑𝑆

Ωs

+ ∫ 𝛼𝝍 ∙
𝜕𝒖

𝜕𝑡
𝑑𝑆

Ωs

= −∫ 𝛻𝝍: ℂ: (
1

2
(𝛻𝒖 + (𝛻𝒖)†)) 𝑑𝑆

Ωs

+ ∮ 𝝍 ∙ 𝑝𝒏
𝜕Ω

𝑑𝑙,  (12)

 

and the weak form of the modified acoustic wave equation is 

expressed as 

 

∫ 𝜙
1

𝑐𝑓
2

𝜕2𝑝

𝜕𝑡2
Ω𝑓

𝑑𝑆 + ∫ 𝜒𝜙
𝜕𝑝

𝜕𝑡Ω𝑓

𝑑𝑆 + ∫ 𝜅𝜙𝑝
Ω𝑓

𝑑𝑆 + ∫ ∇𝜙∇𝑝
Ω𝑓

𝑑𝑆 

+∮ 𝜌𝑓𝜙𝒏 ∙
𝜕Ω

𝜕2𝒖

𝜕𝑡2
𝑑𝑙 − ∫ 𝜙∇ ∙ 𝒘

Ω𝑓

𝑑𝑆 = 0, (13) 

∫ 𝝍 ∙
𝜕𝒘

𝜕𝑡Ω𝑓

𝑑𝑆 + ∫ 𝝍 ∙ (𝑨𝒘)
Ω𝑓

𝑑𝑆 + ∫ 𝝍 ∙ (𝑩∇𝑝)
Ω𝑓

𝑑𝑆 = 𝟎,  

 (14) 

where 𝝍 ∈ [𝐻1(Ω𝑠)]
2, 𝜙 ∈ 𝐻1(Ω𝑓) are arbitrary vector-valued 

and scalar test functions, respectively. 

We spatially discretize the above weak forms (12–14) using 

the standard Galerkin method [25], [26]. Let 𝑁𝑢, 𝑁𝑝,   and 𝑁𝑤 

specifiy the number of spatial nodes in the solid, fluid, and the 

PML domains, respectively. The discretization results in three 

coupled linear differential equations in the displacement vector, 

𝒖 ∈ ℝ2𝑁𝑢
, the pressure vector, 𝒑 ∈ ℝ𝑁𝑝

 and the auxiliary 

vector for the PML, 𝒘 ∈ ℝ2𝑁𝑤
:  

 

𝑴𝒖�̈� + 𝑪𝒖�̇� + 𝑲𝒖𝒖 + 𝑹𝒖𝒑 = 𝟎,  in the solid domain, (15) 
𝑴𝒑�̈� + 𝑹𝒑�̈� + 𝑪𝒑�̇� + 𝑲𝒑𝒑 + 𝑬𝒘 = 𝟎,  

in the fluid and PML domain, (16)
 

𝑪𝒘�̇� + 𝑲𝒘𝒘 + 𝑭𝒑 = 𝟎,  in the PML domain, (17) 

 

where 𝑴,𝑪,𝑲 represent the mass matrix, the damping matrix, 

and the stiffness matrix, respectively.  𝑴𝒖, 𝑪𝒖, 𝑲𝒖 ∈

ℝ2𝑁𝑢×2𝑁𝑢
; 𝑴𝒑, 𝑪𝒑, 𝑲𝒑 ∈ ℝ𝑁𝑝×𝑁𝑝

,𝑪𝒘, 𝑲𝒘 ∈  ℝ2𝑁𝑤×2𝑁𝑤
, and 

they are all symmetric positive definite [25], [27]. 𝑹𝒖 ∈

ℝ2𝑁𝑢×𝑁𝑝
, 𝑹𝒑 ∈ ℝ𝑁𝑝×2𝑁𝑢

 are the coupling matrices for the 

fluid-solid interface. 𝑬 ∈ ℝ𝑁𝑝×2𝑁𝑤
, 𝑭 ∈ ℝ2𝑁𝑤×𝑁𝑝

 are the 

matrices introduced by the PML. The notations of the single and 

double dots are used to denote the first and second time 

derivatives, respectively. For a detailed definition of the entries 

in the matrices, please refer to Appendix A.  

Equations (15–17) can be reorganized into a single linear 

equation 
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[

𝑴𝒖 𝟎𝑁𝑢×𝑁𝑢 𝟎𝑁𝑢×𝑁𝑢

𝑹𝒑 𝑴𝒑 𝟎𝑁𝑝×𝑁𝑝

𝟎𝑁𝑤×𝑁𝑤 𝟎𝑁𝑤×𝑁𝑤 𝟎𝑁𝑤×𝑁𝑤

] [
�̈�
�̈�
�̈�

]

+ [

𝑪𝒖 𝟎𝑁𝑢×𝑁𝑢 𝟎𝑁𝑢×𝑁𝑢

𝟎𝑁𝑝×𝑁𝑝 𝑪𝒑 𝟎𝑁𝑝×𝑁𝑝

𝟎𝑁𝑤×𝑁𝑤 𝟎𝑁𝑤×𝑁𝑤 𝑪𝒘

] [
�̇�
�̇�
�̇�

]

+ [

𝑲𝒖 𝑹𝒖 𝟎𝑁𝑢×𝑁𝑢

𝟎𝑁𝑝×𝑁𝑝 𝑲𝒑 𝑬

𝟎𝑁𝑤×𝑁𝑤 𝑭 𝑲𝒘

] [
𝒖
𝒑
𝒘

] = [

𝟎𝑁𝑢×1

𝟎𝑁𝑝×1

𝟎𝑁𝑤×1

] , (18)

 

 

and we simplify it to 

 

𝑴�̈� + 𝑪�̇� + 𝑲𝒙 = 𝟎, (19) 

 

with 𝑴, 𝑪, 𝑲 ∈ ℝ𝑁×𝑁, 𝒙 ∈ ℝ𝑁×1 . 𝑁  is the total number of 

DOFs in the entire domain, with 𝑁 = 2𝑁𝑢 + 𝑁𝑝 + 2𝑁𝑤. 

Next, we discretize in time using the implicit Newmark-beta 

time stepping with 𝛾 =
1

2
, 𝛽 =

1

4
 for unconditional stability 

[28]. At the (𝑖 + 1)th time step (𝑖 = 0, 1, …, 𝑇 − 1), the field 

can be updated as 

 

𝑴�̈�𝑖+1 + 𝑪�̇�𝑖+1 + 𝑲𝒙𝑖+1 = 𝟎, (20) 

�̇�𝑖+1 = �̇�𝑖 +
1

2
Δ𝑡�̈�𝑖 +

1

2
Δ𝑡�̈�𝑖+1, (21) 

𝒙𝑖+1 = 𝒙𝑖 + Δ𝑡�̇�𝑖 +
1

4
Δ𝑡2�̈�𝑖 +

1

4
Δ𝑡2�̈�𝑖+1. (22) 

 

The preceding three equations can be merged into the 

following matrix form: 

 

[
 
 
 
 

𝑴 𝑪 𝑲

−
1

2
Δ𝑡𝑰𝑁×𝑁 𝑰𝑁×𝑁 𝟎𝑁×𝑁

−
1

4
Δ𝑡2𝑰𝑁×𝑁 𝟎𝑁×𝑁 𝑰𝑁×𝑁 ]

 
 
 
 

[
�̈�𝑖+1

�̇�𝑖+1

𝒙𝑖+1

]

=

[
 
 
 
 

𝟎𝑁×𝑁 𝟎𝑁×𝑁 𝟎𝑁×𝑁

1

2
Δ𝑡𝑰𝑁×𝑁 𝑰𝑁×𝑁 𝟎𝑁×𝑁

1

4
Δ𝑡2𝑰𝑁×𝑁 Δ𝑡𝑰𝑁×𝑁 𝑰𝑁×𝑁 ]

 
 
 
 

[
�̈�𝑖

�̇�𝑖

𝒙𝑖

] , (23) 

 

 

with �̇�𝑖+1, �̈�𝑖+1 being the first and second temporal derivatives 

of 𝒙𝑖+1, and they will be solved simultaneously with 𝒙𝑖+1. 

We rewrite (23) into 

 

𝑾𝒎𝑖+1 = 𝑸𝒎𝑖 , (24) 

 

where 𝑾,𝑸 ∈ ℝ3𝑁×3𝑁,𝒎𝑖 ∈ ℝ3𝑁×1 . Therefore, the original 

differential equations have been converted into algebraic 

equations using FEM. 

Since 𝑾 is invertible (det(𝑾) > 0), we can solve for the 

current time step to reach 

 

𝒎𝑖+1 = 𝑾−1𝑸𝒎𝑖, (25) 

 

where 𝑾−𝟏𝑸 is essentially the propagation matrix. Note that 

we do not explicitly solve 𝑾−𝟏𝑸; instead, we decompose it into 

smaller recursive steps through block elimination, as elaborated 

in the subsequent text. 
The photoacoustic wavefield variables can be propagated 

forward in time from 𝑡 = 0 to 𝑡 = (𝑇 − 1)Δ𝑡 as 

 

[
 
 
 
 

𝒎0

𝒎1

⋮
𝒎𝑇−2

𝒎𝑇−1]
 
 
 
 

= 𝑷𝑇−1𝑷𝑇−2 ⋯ 𝑷1

[
 
 
 
 

𝒎0

𝟎3𝑁×1

⋮
⋮

𝟎3𝑁×1]
 
 
 
 

 , (26) 

 

where 𝑷𝑖  has a block structure with identities in the first 𝑖 
diagonal blocks, and  𝑾−𝟏𝑸 in the 𝑖𝑡ℎ block row and (𝑖 − 1)𝑡ℎ 

block column, i.e.,  

 

𝑷𝑖 =

[
 
 
 
 

𝑰3𝑁×3𝑁 ⋯𝟎3𝑁×3𝑁 𝟎3𝑁×3𝑁 𝟎3𝑁×(𝑇−𝑖−1)∙3𝑁

⋮ ⋱ ⋮ ⋮ ⋮
𝟎3𝑁×3𝑁 ⋯𝑰3𝑁×3𝑁 ⋮ ⋮

𝟎3𝑁×3𝑁 ⋯ 𝑾−𝟏𝑸 𝟎3𝑁×3𝑁 𝟎3𝑁×(𝑇−𝑖−1)∙3𝑁

𝟎(𝑇−𝑖−1)∙3𝑁×3𝑁⋯ … 𝟎(𝑇−𝑖−1)∙3𝑁×3𝑁𝟎(𝑇−𝑖−1)∙3𝑁×(𝑇−𝑖−1)∙3𝑁]
 
 
 
 

 

∈ ℝ3𝑇𝑁×3𝑇𝑁, (27) 
with 𝑖 = 1, 2, …𝑇 − 1.  

From the initial condition in (2), we can map the initial 

pressure 𝒑0 ∈ ℝ𝑁𝑝×1 to 𝒎0 using  

 

[
 
 
 
 

𝒎0

𝟎3𝑁×1

⋮
⋮

𝟎3𝑁×1]
 
 
 
 

= 𝑷0𝒑0, (28) 

 

where 

 

𝑷0 = [

𝝉
𝟎3𝑁×𝑁𝑝  

⋮
𝟎3𝑁×𝑁𝑝

] ∈ ℝ3𝑇𝑁×𝑁𝑝
,𝝉 =

[
 
 
 
 
𝟎𝑁×𝑁𝑝

𝟎𝑁×𝑁𝑝

𝟎𝑁𝑢×𝑁𝑝

𝑰𝑁𝑝×𝑁𝑝

𝟎𝑁𝑤×𝑁𝑝]
 
 
 
 

∈ ℝ3𝑁×𝑁𝑝
. (29) 

 

Suppose we have 𝐿  transducers to record the acoustic 

signals, we relate the measured data �̂� ∈ ℝ𝐿𝑇×3𝑇𝑁  to the 

computed field quantities via 

 

�̂� = [

�̂�0

�̂�1

⋮
�̂�𝑇−1

] = 𝑺 [

𝒎0

𝒎1

⋮
𝒎𝑇−1

] = 𝑺𝑷𝑇−1 ⋯𝑷1 [

𝒎0

0
⋮
0

]

= 𝑺𝑷𝑇−1 ⋯𝑷1𝑷0𝒑0, (30)

 

 

with the sampling matrix defined as 

 

𝑺 = [

𝚯 𝟎𝐿×3𝑁 ⋯ 𝟎𝐿×3𝑁

𝟎𝐿×3𝑁 𝚯 ⋱ ⋮
⋮ ⋱ ⋱ 𝟎𝐿×3𝑁

𝟎𝐿×3𝑁 ⋯ 𝟎𝐿×3𝑁 𝚯

] ∈ ℝ𝐿𝑇×3𝑇𝑁, (31) 
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𝚯 = [

𝒔1

𝒔2

⋮
𝒔𝐿

] ∈ ℝ𝐿×3𝑁, (32) 

𝒔𝑙 = [𝟎1×𝑁, 𝟎1×𝑁 , 𝟎1×𝑁𝑢 , 𝑹𝑙 , 𝟎1×𝑁𝑤] ∈ ℝ1×3𝑁, (33) 

 

where 𝑹𝑙 ∈ ℝ1×𝑁𝑝  is the weighting vector that relates the 

interpolated value at the 𝑙𝑡ℎ  transducer location ( 𝑙 =
0, 1, …, 𝐿) to the neighboring DOFs.  

Finally, we reach the discrete forward imaging model for 

transcranial PACT: 

 

�̂� = 𝑺𝑷𝑇−1 ⋯𝑷1𝑷0𝒑0 = 𝑯𝒑0. (34) 

 

The explicit form of 𝑯† is thus given as  

 

𝑯† = 𝑷0
†𝑷1

† ⋯ 𝑷𝑇−1
† 𝑺†. (35) 

C. Implementation of the forward and adjoint operators 

For the implementation of the forward and adjoint operators, 

we use the open-source C++ finite-element library deal.ii [29]. 

Our choice of this library is motivated by its support for 

parallelization using multiple threads and multiple processors. 

This capability is crucial for the whole-brain simulation, where 

a massive number of nodes are required. 

Similar to the forward propagation, the action of the discrete 

adjoint operator, 𝒑adj = 𝑯†�̂� , can be explicitly decomposed 

into recursive backward steps as  

 

𝒎𝑇−1 = 𝚯†�̂�𝑇−1 (36) 

𝒎𝑖−1 = 𝚯†�̂�𝑖−1 + (𝑾−𝟏𝑸)†𝒎𝑖 , 𝑖 = 1, 2, ⋯ , 𝑇 − 1, (37) 

𝒑adj = 𝝉†𝒎0. (38) 

 

The update in (36) can be written in terms of quantities 

similar to (20-22) 

 

�̈�𝑖−1 = 𝑴†(𝑽†𝒙𝑧
𝑖 ) − �̈�𝑖, (39) 

�̇�𝑖−1 = −(𝑪 + Δ𝑡𝑲)†(𝑽†𝒙𝑧
𝑖 ) + �̇�𝑖 + Δ𝑡𝒙𝑖, (40) 

𝒙𝑖−1 = 𝒙𝑖 − 𝑲†(𝑽†𝒙𝑧
𝑖 ) + ∑ 𝑹𝑙

†�̂�𝑙
𝑖−1

𝐿

𝑙=1

, (41) 

 

where 

 

𝑽 = (𝑴 +
Δ𝑡

2
𝑰 +

Δ𝑡2

4
𝑰)

−1

, (42) 

𝒙𝑧
𝑖 = �̈�𝑖 +

Δ𝑡

2
�̇�𝑖 +

Δ𝑡2

4
𝒙𝑖 (43) 

 

are the auxiliary matrix and vector, respectively.  

Only one linear algebraic equation of size 𝑁  needs to be 

solved within each forward and backward time step. The 

detailed solution procedure is explained in Appendix B. 

D. Image reconstruction using the forward and adjoint 
operators 

For PACT transcranial image reconstruction, the goal is to 

estimate 𝒑0 given the measured photoacoustic data 𝒑m and the 

forward operator 𝑯  in (34). Since we have obtained the 

numerically matched adjoint operator 𝑯†, we can directly apply 

it as a reconstruction operator to the measured data [10], [11]. 

This results in 𝒑adj = 𝑯†𝒑m , effectively generating a 

reconstructed image. Furthermore, we can integrate the 

forward-adjoint operator pair into an iterative reconstruction 

algorithm by solving the optimization problem: 

𝒑𝟎
∗ = argmin

𝒑𝟎≥ 0
‖𝒑m − 𝑯𝒑𝟎‖2

2 + 𝛾R(𝒑𝟎) . (44) 

The first term on the right-hand side represents the data fidelity 

term corresponding to a least squares functional. R(𝒑𝟎) denotes 

a regularization term reflecting prior knowledge on 𝒑opt, while 

𝛾  serves as the regularization parameter controlling the 

regularization weight. Note that explicitly computing the action 

of the adjoint operator is essential for calculating the gradient 

of the data fidelity term. 

III. RESULTS 

In this section, we demonstrate our proposed forward-adjoint 

pair through both numerical simulations and phantom 

experiments. For all of the results below, the meshes are 

generated by the widely-used commercial FEM software, 

COMSOL multiphysics [30], and subsequently imported into 

our customized FEM solver. For spatial discretization, we use 

the second-order Lagrange finite elements. 

A. Validation of the FEM forward and adjoint operator 

We validate the accuracy of our 2D FEM forward operator 

by comparing our FEM simulation result with the analytical 

solution provided in [31] for the scattering of cylindrical 

acoustic waves by an elastic cylinder, as shown in Fig. 2(a). The 

setup involves a lossless fluid domain (blue), wherein an 

infinite Ricker wavelet line source (red) with a peak frequency 

of  fc=
1

3
 MHz generates an acoustic field [32]. The acoustic 

field interacts with a lossy elastic medium (yellow), and the 

resulting scattered field is recorded by a point probe (green). 

The acoustic properties of the medium are defined as follows: 

 cf = 1500 m/s,  ρ
f
= 1000 kg/m3, cp = 3000 m/s , cs = 1500 

m/s, α = 0.75/µs, ρ
𝑠
= 1850 kg/m3. For our FEM simulation, 

 
Fig. 2.  Validation of the forward FEM operator accuracy on a 2D 
scattering problem. (a) Illustration of the validation setup. An infinite 
line source generates an acoustic field that is subsequently scattered by 
an elastic cylinder. (b) Comparison between the analytical solution and 
the numerical solution obtained from our customized solver at the 
receiver position. 
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we consider a computational region of size 30 mm × 30 mm, 

with a 4.5 mm-thick PML applied in all directions to minimize 

boundary reflections. A spatial discretization of 5 elements per 

wavelength (EPW, number of elements per minimum 

wavelength within the frequency band) and a time step of Δ𝑡 =
20 ns are employed. Fig. 2(b) shows the excellent agreement 

between the solution obtained from our customized FEM 

forward solver and the analytical solution. To assess the 

accuracy, we calculate the L2 relative error with respect to the 

analytical solution at the sensor position. The L2 relative error 

is defined as 

L2 relative error = √
‖𝒑𝑎 − 𝒑𝑠‖2

2

‖𝒑𝑎‖2
2

(45) 

where 𝒑𝒂  is the analytical solution, and 𝒑𝒔  is the solution 

obtained from a simulation. The relative L2 error amounts to 

only 10% over the entire waveform in a duration of 50 µs. This 

validation confirms the high accuracy of our FEM forward 

operator implementation. 

We also validate the implementation of the adjoint operator. 

Although the adjoint operator conceptually corresponds to the 

transpose of the forward operator, the matrices 𝑯† and 𝑯 are 

prohibitively large to compute in a single step, making direct 

verification difficult. Therefore, we conduct validation using a 

dot-product test, which is a well-established routine for 

assessing the numerical adjointness between the forward and 

adjoint operators [33]. This test involves verifying the identity 

of the inner product 〈𝑯𝒑, �̂�〉 = 〈𝑯†�̂�, 𝒑〉, which arises from the 

associative property of linear algebra. Our implementation 

demonstrates agreement between the left and right sides of the 

equation up to the machine precision (i.e., 15 digits), thus 

confirming the accuracy of our implementation.  

B. Comparative feasibility study with FDTD 

To assess the feasibility of FEM for time-dependent 

problems, we conduct a comparative analysis of our FEM 

solver with the widely adopted FDTD method. Our analysis 

contains two aspects: computation time and image 

reconstruction quality, which are evaluated on simulated 

datasets. The FDTD forward-adjoint pair in this study is 

implemented according to [14] using the Python FDTD library 

Devito [34]. 

1) Comparison of computation time for the forward 
operator 

We compare the computation time required to achieve the 

desired level of accuracy for the two methods. Note that the 

disparity in computation time is not solely influenced by the 

numerical schemes (FEM vs FDTD), but also by the details of 

the implementation. Thus, the primary objective of this 

comparison is not to directly evaluate the computation speed, 

but to offer insights into the practical usability of FEM.  

To conduct this investigation, we apply both algorithms to 

the same 2D scattering problem as described in Section III. A. 

We allow the spatiotemporal step sizes of both algorithms to 

vary, ensuring that each method operates with its maximum 

step size. We measure the computational time by conducting 

three simulation runs for each configuration on a single thread 

of an Intel Xeon E5 processor.  

Table I presents three examples where the solution accuracy 

is comparable for both methods. Points per wavelength (PPW), 

which refers to the number of grid points per minimum 

wavelength within the frequency band, describes the size of the 

FDTD mesh. Meanwhile, DOFs represent the total number of 

unknowns in the resulting formulation. At 3 EPW for FEM and 

32 PPW for FDTD, respectively, the two approaches exhibit 

similar performance in terms of time and accuracy. However, 

the FEM requires significantly lower mesh density and about 

20 times fewer DOFs. This advantage is attributed to the 

adaptability of unstructured mesh to irregular geometries and 

the domain-decomposed formulation. Notably, as the desired 

accuracy level increases, the FEM approach becomes 

asymptotically faster due to the more efficient representation of 

the geometry with a coarser mesh (Fig. 3). This comparison 

demonstrates that our FEM approach is computationally 

feasible in 2D for time-dependent problems. 

2) Comparison of iterative transcranial image 
reconstruction of simulated data 

The value of the forward-adjoint pair for transcranial PACT 

lies in its ability to seamlessly integrate with various iterative 

optimization frameworks. In the preceding sections, we have 

established the validity and feasibility of our developed forward 

and adjoint operators. Here, our focus shifts toward the ultimate 

goal of image reconstruction, for which these operators are 

devised. We present a comparative analysis of the reconstructed 

images using both the FEM and FDTD approaches. As the 

direct adjoint image may exhibit variations based on the 

specific operator formulation, our comparison is centered on the 

iteratively reconstructed images of simulated noiseless pressure 

measurements. Once again, we emphasize that this comparison 

serves solely to demonstrate the feasibility of our FEM method 

 
Fig. 3.  Computation mesh used in the FEM and FDTD simulations 
to achieve a similar solution accuracy. Yellow regions denote the 
geometry of the solid object. 

Method 

Similar L2 

relative 

error 

PPW/

EPW 
# DOFs 

Averaged 

computation 

time (s) 

FEM 13.54% 3 31934 9.62 

FDTD 13.04% 32 592900 12.70 

FEM 9.59% 5 88306 40.25 

FDTD 9.02% 64 2365444 120.94 

FEM 3.25% 7 171374 153.39 

FDTD 3.39% 128 9449476 1084.37 
 
TABLE I. Comparison of FEM with FDTD on the accuracy and 
computation time for forward simulation. Three examples of 
comparable solution accuracies for both methods are presented. 
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and should not be construed as a rigorous evaluation of the 

superiority of either method.  

Fig. 4(a) depicts the simulation setup for transcranial PACT. 

The setup involves a skull-shaped elastic medium immersed in 

a fluid medium. We derive the skull boundaries from the 

segmentation of a skull slice obtained using X-ray computed 

tomography (CT) and then apply a four times demagnification 

to reduce computation time. The inner and outer boundaries are 

demagnified with slightly different ratios to maintain an 

approximate skull thickness of 6 mm for sufficient acoustic 

aberration [1]. The computational region spans 

60 mm × 60 mm  and incorporates a 5 mm PML layer in all 

directions. The material properties remain consistent with those 

described in Subsection III. B. 1. We low-pass filter the 

recorded waveform up to 2 MHz prior to inversion to simulate 

the limited bandwidth of transducers. To assess the 

reconstruction quality of the inversion methods, we analyze the 

point spread function (PSF). For this purpose, we select an 

object size smaller than the maximum supported wavelength. 

Specifically, we use a 2D Gaussian with a full width at half 

maximum (FWHM) of 0.4 mm for the initial pressure 

distribution.  

 The inversion process is often hindered by a significant 

pitfall known as the inverse crime, where the utilization of the 

same model to generate and invert the synthetic data results in 

[35]. While we do not commit the inverse crime here, we 

prevent bias towards any method by obtaining the measured 

data �̂� using an exceedingly high-resolution grid for both the 

FEM and FDTD methods. The FEM forward data is generated 

by COMSOL with a 10-EPW mesh, and the FDTD forward data 

is generated by Devito with a 128-PPW mesh. Subsequently, 

we reconstruct images from these accurate forward data using 

 
Fig. 4. Iterative image reconstruction comparison with FDTD solver. (a) Initial pressure distribution and the demagnified skull geometry. (b, c) 
PSFs reconstructed using either FEM or FDTD from the (b) FEM and (c) FDTD forward data. The labels use an A-B format where A represents the 
discretization method (FEM or FDTD) used to generate the data and B denotes the discretization method used for the inversion. (d, e) PSFs along 
(d) X and (e) Y across the center of the point target in (b) and (c). FE, FEM method; FD, FDTD method; w/ skull: forward data generated with skull 
present in simulation; w/o skull: forward data generated without skull present in simulation. 
 

 FWHM X (mm) FWHM Y (mm) Background STD SSIM PSNR 

FEM-FDTD w/skull 0.950 0.962 9.52e-4 0.9664 51.77 

FEM-FEM w/skull 0.959 0.953 8.54e-4 0.9836 56.30 

FEM-FDTD w/o skull 0.946 0.954 1.38e-5 0.9917 53.37 

FEM-FEM w/o skull (ref) 0.951 0.953 6.63e-4   

FDTD-FDTD w/skull 0.955 0.948 1.20e-3 0.9787 53.30 

FDTD-FEM w/skull 0.959 0.960 9.35e-4 0.9860 56.47 

FDTD-FDTD w/o skull (ref) 0.964 0.963 1.04e-4   

FDTD-FEM w/o skull 0.955 0.953 6.79e-4 0.9919 59.60 
TABLE II. Quantitative comparison of reconstructed images. The quantification error is assumed to be half of the interpolated grid size, in this 
case, 0.012 mm. 
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practical grid sizes. Specifically, we employ meshes of 3 EPW 

for FEM and 32 PPW for FDTD, as these configurations yield 

comparable results in Table I. For the iterative inversion 

process, we adopt the accelerated gradient descent method [36] 

for both frameworks. The objective function is the L2 norm 

between the measured and predicted data, and the iteration 

terminates when it stops decreasing. The reference image is 

obtained by reconstructing measurements without the presence 

of a skull using the same inversion algorithm.  

Figs. 4(b‒e) display reconstructed PSF and their cross-

sections at the center using forward data generated by 

COMSOL and FDTD. Upon visual inspection, there are 

negligible differences observed among the different 

reconstructions.  

To quantitatively compare the reconstructions, we interpolate 

the FEM solution to the same Cartesian grid prior to further 

analysis. We present the results in Table II, which includes 

metrics such as FWHM, background standard deviation (STD), 

structural similarity index (SSIM), and peak signal-to-noise 

ratio (PSNR). The reconstructions that exhibit better 

performance in the presence of a skull are highlighted in bold. 

While both schemes exhibit comparable overall performance, 

FEM reconstructions yield better results in terms of background 

STD, SSIM, and PSNR. This case study demonstrates the 

viability and feasibility of our FEM method for accurate 

iterative image reconstruction. 

C. Phantom result 

Having established the validity and feasibility of our method, 

we proceed to apply the FEM adjoint to the experiment data. As 

illustrated in Fig. 5(a), our phantom consists of a z-invariant, 

CIT-shaped absorbing structure (made of 4% agar mixed with 

black ink) embedded in transparent agar. These structures are 

enclosed within a cylindrical acrylic shell, which introduces 

acoustic heterogeneities and solid-induced mode conversions. 

The cylinder has inner and outer diameters of 4.2 mm and 4.5 

mm, respectively, and a height of 3 cm. We set the material 

properties of the acrylic shell as 𝑐𝑠 = 1400 m/s, 𝑐𝑝 =

2746 m/s, 𝛼 = 0.1/μs, and 𝜌𝑠 = 1178.2 kg/m3. We assume the 

water and agar phantom to be lossless and homogeneous, with 

properties of 𝑐𝑓 = 1487 m/s and 𝜌𝑓 = 1000 kg/m3.  

As depicted in Fig. 5(b), our experimental data are acquired 

from a 512-element unfocused full-ring transducer array, with 

a central frequency of 2.25 MHz and a one-way bandwidth of 

95% [35]. To simulate the frequency and bandwidth of a brain 

imaging system [1], we low-pass filter the measured data to 1.5 

MHz. The aberration-free data, acquired without the acrylic 

shell, serve as the reference. Since both the absorbing target and 

the detection array are approximately z-invariant, we employ 

the 2D FEM model for the cylindrical wave propagation in this 

experiment. The computational region spans 23 cm × 23 cm, 

with a grid size of 0.3 mm.  

 
 
Fig. 5. Phantom adjoint reconstruction using the customized FEM forward-operator pair. (a) Photograph of the z-invariant agar phantom 
contained in the acrylic shell. (b) Schematic of the experimental setup. (c) UBP reconstructed images of the phantom without acrylic shell. UBP 
reconstructed images of the phantom with shell using water SOS (d) and manually optimized SOS (e). (f) FEM adjoint of the aberration-free data. 
FEM adjoint of the aberrated data with fluid inhomogeneity modeling (g) and solid inhomogeneity modeling (h). 
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The reconstructed images are shown in Fig 5(c-g). Fig. 5(c) 

displays the reference image reconstructed with the aberration-

free data using the typical universal back projection (UBP) 

method [36]. Fig. 5(d) and (e) show the original and manually 

optimized single speed-of-sound (SOS) UBP reconstruction of 

the aberrated data, respectively. In Fig. 5(f–h), we demonstrate 

the direct FEM adjoint image of the aberration-free data, 

aberrated data with fluid inhomogeneity modeling, and 

aberrated data with solid inhomogeneity modeling, 

respectively. Since our model inherently accounts for the 

acoustic attenuation and mode conversions in the elastic 

medium, the FEM adjoint naturally compensates for the solid-

induced aberrations in image reconstruction. As a result, the 

FEM adjoint image notably recovers several original features 

compared with the optimized UBP image, as indicated by the 

white arrows.  

IV. CONCLUSION AND DISCUSSION 

In this paper, we present a novel discrete forward-adjoint 

operator pair based on the finite element method (FEM) for 

transcranial PACT. Instead of using a unified elastic wave 

equation throughout the whole domain, we divide the 

simulation region into fluid and solid regions, and explicitly 

model the solid-liquid interfaces with coupled elastic-acoustic 

equations. This FEM discretization and domain-decomposed 

formulation reduces the number of unknowns by 20 times in the 

discretized linear system, which has the potential for more 

efficient computation while maintaining accuracy. We validate 

the framework through numerical simulations and comparison 

with a well-established FDTD method. We also demonstrate the 

capability of the adjoint operator to effectively mitigate solid-

induced aberrations in experimental phantom data. 

By utilizing unstructured meshes that adapt to the skull 

geometry, our finite element discretization significantly reduces 

computational resources for spatial discretization. However, the 

nearly 20-fold reduction in DOFs in our FEM approach results 

not only from the accommodation of a coarser mesh but, more 

importantly, from the explicit decomposed modeling of the 

fluid and solid domains. This approach enables us to assign only 

1 DOF per node in the fluid domain, 2 DOFs in the solid 

domain, and 3 DOFs in the PML domain. In contrast, the 

unified elastic wave equation proposed in [14] imposes 13 

DOFs per spatial node encompassing all domains. The 

advantage of DOF reduction becomes more pronounced in 3D 

simulations, considering that most of the simulation region will 

be fluid, which needs only 1 DOF per node. In comparison, 

FDTD requires 27 DOFs per node uniformly throughout the 

entire region, as elaborated in the appendix of [14]. 

While our paper focuses on the 2D full-wave transcranial 

PACT reconstruction using FEM, extending the method to 3D 

simulations presents a significant computational challenge. The 

challenge arises from the exponential growth of the large sparse 

system of equations generated during 3D finite element 

assembly, which necessitates computational acceleration 

strategies. To address this problem, iterative solvers [37], [38] 

should be used for solving the sparse system, as direct solvers 

[39], [40] become infeasible in the 3D simulations. 

Additionally, we suggest implementing the mass lumping 

technique for explicit time stepping [17] to simplify system 

matrix inversion. Finally, parallelization techniques such as 

multithreading, GPU acceleration, and multiprocessor 

utilization can be implemented to further enhance the 

algorithm’s efficiency.  

We have observed applications employing the spectral 

element method (SEM) for transcranial ultrasound imaging [41], 

[42]. SEM, as a variant of Galerkin-based FEM using Lagrange 

basis functions and Gauss-Lobatto-Legendre (GLL) quadrature 

rules, offers the advantage of generating a diagonal mass matrix, 

thus significantly alleviating computational demands. While 

SEM may encounter challenges in modeling complex 

geometries such as the skull [43-44], it presents an interesting 

direction to explore for computational efficiency in the context 

of transcranial PACT. Our theoretical derivations for the 

forward-adjoint pair in transcranial PACT remain the same 

under the SEM framework, requiring only the substitution of 

SEM-specific basis functions and quadrature rules. 

Although our approach offers an accurate and efficient 

representation of the physics of transcranial PACT, it requires 

precise prior knowledge of the spatial distribution of SOS 

within the imaging domain. In practical implementation, we can 

infer the geometry and acoustic properties of the skull from 

adjunct CT scans, a method commonly employed to estimate 

the heterogeneities in density, absorption, and SOS of the skull 

[45]–[47]. The position of the skull during transcranial imaging 

can be derived from a co-registration of the CT image and an 

adjunct ultrasound skull boundary measurement. The 

remaining mismatch in the model can be further alleviated 

through the adoption of a joint reconstruction framework for 

both the skull's properties and the initial pressure distribution 

[48]–[51].  

APPENDIX A: DEFINITION OF ASSEMBLED FEM MATRICES 

We denote the 𝑖𝑡ℎ  shape function in the solid and PML 

domains as 𝝍𝒊, the 𝑖𝑡ℎ shape function in the fluid domain as 𝜙𝑖. 

The finite elements in the fluid, solid, and PML domain are 

represented by 𝛺𝑒,𝑓 , 𝛺𝑒,𝑠 , and 𝛺𝑒,𝑃𝑀𝐿 . The entries in the 

element matrices are defined as 

𝑀𝑖𝑗
𝑢 = ∫ 𝝆𝒔𝝍𝑗 ∙ 𝝍𝑖

 

𝛺𝑒,𝑠

𝑑𝑆 , (46) 

𝐾𝑖𝑗
𝑢 = ∫ (𝜆(∇ ∙ 𝝍𝑖) ∙ (∇ ∙ 𝝍𝑗)) 𝑑𝑆

 

𝛺𝑒,𝑠

+∫ ((𝜇∇𝝍𝑖) ∙ (∇𝝍𝑗 + (∇𝝍𝑗)
†)) 𝑑𝑆

 

𝛺𝑒,𝑠

, (47)
 

𝐶𝑖𝑗
𝑢 = ∫ 𝛼𝝍𝑖 ∙ 𝝍𝑗𝑑𝑆

 

𝛺𝑒,𝑠

, (48) 

𝑅𝑖𝑗
𝑢 = −∮ 𝝍𝑖 ∙ (𝜙𝑗𝒏𝒋)

 

𝜕𝛺𝑒,𝑠

𝑑𝑙, (49) 

 

𝑀𝑖𝑗
𝑝

= ∫ 𝜙𝑖 ∙
1

𝑐𝑓
2 𝜙𝑗𝑑𝑆

 

𝛺𝑒,𝑓

, (50) 
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𝐾𝑖𝑗
𝑝

= ∫ (∇𝜙𝑖 ∙ ∇𝜙𝑗 + 𝜙𝑖 ∙ 𝜅𝜙𝑗)𝑑𝑆
 

𝛺𝑒,𝑓

, (51) 

𝐶𝑖𝑗
𝑝

= ∫ 𝜙𝑖 ∙ 𝜒𝜙𝑗𝑑𝑆
 

𝛺𝑒,𝑓

, (52) 

𝑅𝑖𝑗
𝑝

= ∮ 𝜙𝑖 ∙ (𝜌𝑓𝒏𝒋 ∙ 𝝍𝑗)
 

𝜕𝛺𝑒,𝑠

𝑑𝑙, (53) 

𝐸𝑖𝑗 = ∫ ∇𝜙𝑖 ∙ 𝝍𝑗𝑑𝑆
 

𝛺𝑒,𝑃𝑀𝐿

, (54) 

𝐹𝑖𝑗 = ∫ 𝝍𝑖 ∙ 𝑩∇𝜙𝑗𝑑𝑆
 

𝛺𝑒,𝑃𝑀𝐿

, (55) 

𝐶𝑖𝑗
𝑤 = ∫ 𝝍𝑖 ∙ 𝝍𝑗𝑑𝑆

 

𝛺𝑒,𝑃𝑀𝐿

, (56) 

𝐾𝑖𝑗
𝑤 = ∫ 𝝍𝑖 ∙ 𝑨𝝍𝑗𝑑𝑆

 

𝛺𝑒,𝑃𝑀𝐿

. (57) 

APPENDIX B: SOLUTION PROCEDURE IN THE FORWARD AND 

ADJOINT STEP 

The forward stepping in (20–22) can be solved using the 

following procedure according to [28] 

Solve for predictors: 

 

𝒙𝑖+1 = 𝒙𝑖 + Δ𝑡�̇�𝑖 +
1

4
Δ𝑡2�̈�𝑖, (58) 

�̇̃�𝑖+1 = �̇�𝑖 +
1

2
Δ𝑡�̈�𝑖. (59) 

 

Solve the linear equation: 

 

(𝑴 +
1

2
Δ𝑡𝑪 +

1

4
Δ𝑡2𝑲) �̈�𝑖+1 = −𝑪�̇̃�𝑖+1 − 𝑲𝒙𝑖+1. (60) 

 

Update state variables: 

 

𝒙𝑖+1 = 𝒙𝑖+1 +
1

4
Δ𝑡2�̈�𝑖+1, (61) 

�̇�𝑖+1 = �̇̃�𝑖+1 +
1

2
Δ𝑡�̈�𝑖+1. (62) 

 

The adjoint stepping can be calculated using the following 

procedure 

Calculate auxiliary vector 

 

𝒙𝑧
𝑖 = �̈�𝑖 +

Δ𝑡

2
�̇�𝑖 +

Δ𝑡2

4
𝒙𝑖. (63) 

 

Let 𝑽†𝒙𝑧
𝑖 = 𝒚𝑧

𝑖 , we solve 𝒚𝒊 with this linear equation 

 

(𝑴 +
Δ𝑡

2
𝑰 +

Δ𝑡2

4
𝑰)

†

𝒚𝑧
𝑖 = 𝒙𝒛

𝑖 . (64) 

 

Finally, we update the variables through (36–38), which we 

rewrite here as 

�̈�𝑖−1 = 𝑴†𝒚𝑧
𝑖 − �̈�𝑖, (65) 

�̇�𝑖−1 = −(𝑪 + Δ𝑡𝑲)†𝒚𝑧
𝑖 + �̇�𝑖 + Δ𝑡𝒙𝑖, (66) 

𝒙𝑖−1 = 𝒙𝑖 − 𝑲†𝒚𝑧
𝑖 + ∑𝑹𝑙

†�̂�𝑙
𝑖−1

𝐿

𝑙=1

. (67) 

 

The matrix (𝑴 +
Δ𝑡

2
𝑰 +

Δ𝑡2

4
𝑰) requires assembly only once 

prior to conducting the forward and adjoint calculations. Within 

each forward and adjoint step, only one linear equation, i.e., 

(58) and (62) need to be solved. 
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