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Following a comprehensive analysis of the historical literature, we model the geometry of the
Stern–Gerlach experiment to numerically calculate the magnetic field using the finite-element
method. Using this calculated field and Monte Carlo methods, the atomic translational dynam-
ics are simulated to produce the well-known quantized end-pattern with matching dimensions. The
finite-element method used provides the most accurate description of the Stern–Gerlach magnetic
field and end-pattern in the literature, matching the historically reported values and figures.

I. INTRODUCTION

In 1922, Otto Stern and Walther Gerlach reported
what is now known as the Stern–Gerlach experiment
(SGE), a fundamental milestone in the development of
modern physics [1–3]. Following Stern’s preliminary work
on the kinetic theory of gases and molecular beams [4, 5],
the SGE is a significant benchmark as it presented direct
proof for angular momentum quantization [6, 7], con-
firmed the electron intrinsic spin years later [8], allowed
for the selection of spin-polarized atoms, is the first mea-
surement of atomic ground state properties without elec-
tronic excitation, and led to further research into entan-
glement, non-classical correlations, and the measurement
problem [9, 10]. As a result, the SGE has been widely
used as an introduction and segue to quantum theory in
contemporary textbooks [11–13].

The three-paper series [1–3] described the deflection of
a beam of silver atoms entering an inhomogeneous mag-
netic field gradient. The first of the series set out the pre-
liminary framework, showing experimental proof of the
silver atom’s magnetic moment [1]. A few months later,
in the second paper of the series, they published exper-
imental verification of directional quantization, produc-
ing the well-known splitting patterns seen in Fig. 1(a)
[2]. In the third publication, they improved the preci-
sion of their measurements by addressing uncertainties
related to the atomic beam’s distance from the magnet
and the strength of the magnetic field. Maintaining the
same experimental apparatus, they measured “the mag-
netic moment of the normal silver atom in the gaseous
state [as] a Bohr magneton” [3, 14].

Fig. 2 shows the model of the original SGE. Heated sil-
ver (Ag) atoms exit the oven (O) in the y-direction, travel
through two collimating slits (S1 and S2), pass through
an inhomogeneous magnetic field gradient generated by
two ferromagnetic pole-pieces, and deposit on the end
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detector plate (D). The experiment shows the splitting
of the beam into two components along the z direction.
The magnet consists of a blade-shaped pole and a fur-
rowed pole called the cutting edge (CE) and trench (T),
respectively (see Fig. 2(b)). Maximal splitting occurs at
the center of the magnet, reducing as it moves away from
the CE as seen in Fig. 1.
In this work, we model the SGE magnetic field accu-

rately with the COMSOL Multiphysics® finite element
analysis tool. In comparison, related literature studies on
the SGE approximate the magnetic field analytically us-
ing Maxwell’s equations, with a zero magnetic field along
the atomic propagation axis and a spatially linear field
dependence along the quantization axis [15–20]. We per-
form a Monte Carlo simulation of the atomic trajectories
traveling through this field. To our knowledge, this work
provides the most accurate numerical replication of the
original magnetic field and end-pattern of the historical
SGE in comparison to the literature [21, 22].

II. SIMULATION

The field properties and the atomic trajectories are
modelled based on historically accurate features and pa-
rameters from the original 1922 SGE papers and subse-
quent review studies [1–3, 10, 14].

A. Modeling the Magnetic field

Finite-element analysis is used to simulate the mag-
netic field via COMSOL Multiphysics® [23]. The three-
dimensional geometry of the magnets has been drawn
as closely as possible to the references. In COMSOL,
extremely fine mesh was selected to optimize the ge-
ometry and increase the field gradient resolution. Fur-
thermore, the cutting edge of the upper magnet was
smoothed with a fillet to prevent numerical inaccuracies
near the volume of interest.
In Fig. 2, the reference frame’s origin is centered at
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FIG. 1. Detected end-patterns for B ̸= 0 (top) and B = 0 (bottom). Panels (a) and (c) are the original patterns reported by
Stern and Gerlach [2]. Panels (b) and (d) correspond to the simulation outcomes. Inset of (a) is a representative illustration
of the pattern displaying its length and width attributes reported in [2]. Note, both patterns are to scale.

the middle of the magnets. The magnets span, 3.5 cm
in length, is placed from y = −1.75 to 1.75 cm. The
magnets’ cross-section is shown in Fig. 2(b) & 3. The
trench of the lower magnet has a depth of 5mm and
a width of 1.5mm. The CE tip of the upper magnet
converges to the point (x, z) = (0, 0), features a wedge
angle of 64◦, and sits 1mm above the top of the trench.
The described cut-plane geometry is modelled after the
experimental schematic presented in [2].

Non-smooth corners can introduce inaccuracies in fi-
nite element analysis. To mitigate these inaccuracies near
the CE tip, a fillet with a radius of 30 µm was introduced
to smooth the corner, as shown in Fig. 2(c). The pre-
cise shape of the CE tip is significant, as its proximity to
the atomic trajectories means that any singularity in the
magnetic field gradient can result in inaccuracies in the
trajectories.

As shown in Fig. 2(a), the oven O is placed at y =
−7.65 cm along the propagation direction, the slit S1 is

positioned 2.50 cm away at y = −5.15 cm, and the slit
S2 is placed 3.35 cm away immediately in front of the SG
magnets (y = −1.80 cm). See reference [14, 24] for histor-
ical reference. The detector plate is placed immediately
after the magnets. The slits O, S1, and S2 define the tra-
jectory of the beam, which is centered at (x, z) = (0, zc)
in the transverse plane. Hence, zc describes the vertical
distance between the CE tip and the atomic beam at the
entrance of the magnet in the absence of beam deflection
before the magnets. The scale and geometry of the simu-
lation components are calculated in accordance with the
literature [2].
Because there is no reference to the magnitude of the

magnetic field that Stern and Gerlach specifically used
for the reported pattern, we adjusted the field strength,
B, such that ∂Bz

∂z as a function of z matches the reported
experimental values from the third 1922 SGE paper [3].
The theoretical model and experimental measurements
of ∂Bz

∂z presented in [3] closely align with the COMSOL
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FIG. 2. Modelled Stern–Gerlach experiment. (a) Three-dimensional geometry of our model. O: oven. S1 and S2: slits. CE:
magnet cutting edge. T: magnet trench. D: detector. (b) Cross-section of the magnets in the transverse plane. (c) Cross-section
of Slit 2 (S2) with a slit height of h = 0.035mm and a width of w = 0.8mm. The fillet with a radius of 30 µm was introduced
to smooth the CE tip.

simulations shown in Fig. 4.
The magnetic field cross-section centered at (x, z) =

(0, zc = −0.22mm) along the atomic propagation axis
(y) is shown in Fig. 5.

B. Atomic trajectories

A Monte Carlo simulation is calculated where N = 107

Ag atoms (M = 107.868Da) are ejected from the oven’s
circular aperture with an area of 1mm2, populated based
on a random radial Gaussian distribution centered at
(x, z) = (0, zc = −0.22mm). The atomic transla-
tional dynamics are numerically calculated using Euler’s
method based on the classical equation of motion for the
neutral atoms in the experiment:

d2r

dt2
= − 1

M
∇ (−µe ·B(r)) (1)

where t is time, r is the position of the atom, µe is the
magnetic moment of the electron, B(r) is the magnetic

field at coordinate r. Our simulation code is available
online for reference [25].

For simplicity, we assume that the electron magnetic
moments are statistically evenly split to parallel or anti-
parallel to the field immediately out of the oven; no mag-
netic moment is assumed to be oriented at an oblique
angle. This assumption is equivalent to solving two in-
dependent trajectory equations for each eigenstate for
a spin of 1/2 [20]. Various descriptions are available in
the literature, but solving two independent equations for
each state is widely implemented [10, 15, 26]. For com-
parison, atoms with classical unquantized magnetic mo-
ments (sampled from an isotropic distribution) are sim-
ulated, yielding an expected continuous end-pattern (see
Fig. A.1 in Appendix).

The atoms’ initial angular distribution of velocities are
sampled from within a solid cone spreading outward in
the positive y-direction with a vertex angle selected such
that it fills S1. The speeds are uniformly sampled in
the range |v⃗| = [625, 750]m/s. Details about the velocity
selection are further outlined in the discussion section.
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FIG. 3. Cross-section of the magnetic field on the xz plane
at y = 0. Both the upper and lower magnets are visible.

FIG. 4. (Red line) Gradient of the magnetic field along
the z axis calculated using the finite element method. The
same gradient is (blue dashed line) theoretically modelled and
(black crosses) experimentally measured by Stern and Gerlach
[3].

From the oven, the atoms travel to S1’s circular aper-
ture with an area of 3 × 10−3 mm2. The atoms passing
through S1 travel further towards S2. The original SGE
papers describe S2 as a slit-shaped aperture with a length
of 0.8mm and a width of 0.03−0.04mm. In the absence
of a magnetic field gradient, it is expected that the shape
of the end-pattern on the detector plate is a scaled pro-
jection of the S2 shape. Based on this, we modelled the
slit as an eye-shaped aperture to match the zero-field
(B = 0) end-pattern with correct historical length and
width [2]. The contour of the aperture is defined as the
intersection of the two parabolae:

fz,±(x) = ± 2h

w2
x2 + zc ∓

h

2
, −w/2 ≤ x ≤ w/2, (2)

as shown in Fig. 2(c). From S2, the atoms traverse

FIG. 5. Intensity of the magnetic field components: Bz (blue),
By (red), and Bx (green) along the propagation axis (0, y, zc).
The shaded area indicates the location of the magnets. Due
to symmetry, we have Bx = 0. Because ∇ ·B = 0, By shows
small fluctuations near the ends of the magnets.

through the magnet and hit the detector plate placed im-
mediately after the magnet at y = 1.8 cm (see Fig. 2(a)
and references [14, 24] for reference). As previously men-
tioned, the oven, slits, and therefore, the atomic beam
are centered at (x, z) = (0, zc = −0.22 mm). The simu-
lation does not consider reflections off the magnets and
disables particles that interact with the slits, magnets,
and surrounding environment.

III. DISCUSSION

As seen from Fig. 4, the simulated magnetic field gradi-
ents agree with the experimentally reported values in the
literature. Additionally, the selection of zc = −0.22mm
is such that Bz, as shown in Fig. 5, is close to the reported
magnetic field value of around ∼ 1.65T [24] and the final
atomic distribution on the screen resembles the original
pattern. From the simulations, we find that the depth
of the trench does not alter the magnetic field enough
to perturb the end-patterns. From our literature review,
this work is the most comprehensive description of the
magnetic field used in the original SGE experiment.

As shown in Fig. 1, Stern and Gerlach measure aexp =
0.11mm as the minimum splitting, bexp = 0.2mm as
the average splitting, and Lexp = 1.1mm as the pattern
length [2]. Given the historical description of the SGE,
several variables, such as zc and propagation velocities,
remain historically unknown and can be tuned within an
appropriate range to match the end-pattern in [2].

As the SGE was an experimental consequence of
Stern’s preliminary work on molecular velocity measure-
ments, the methodology for producing an atomic silver
beam is similar. The approach is based on heating a silver
wire to its melting point, causing it to evaporate under
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vacuum, thus creating an isotropic propagation of atoms,
which is collimated into a beam. Placing a cold metal
plate along the beam path causes the vapor to conden-
sate on the detector [14]. In the SGE, they used a silver-
loaded clay furnace for more stability over time, but the
principle of emission is the same [24]. By using the mod-
ified Maxwell’s velocity distribution for atomic beams
(where atoms with higher velocities have a higher proba-
bility of entering the atomic beam) for a given tempera-

ture, the root-mean-squared velocity, vrms =
√
4kbT/m,

is found [4, 5, 27]. The melting temperature of silver
is 1234.9K and is the minimum temperature needed to
create the atomic beam [28]. The original SGE reports a
temperature of 1323K [24].

From our simulation, we found that the maximum and
minimum speeds selected from the distribution are cor-
related to the minimum splitting and average splitting
values, respectively. The speed determines the time of
flight of the entire path and the interaction time with the
magnets. Selecting vmax = 750m/s and vmin = 625m/s
yields a simulated asim = 0.11mm and bsim = 0.2mm,
which is in good accordance with a Maxwellian speed dis-
tribution with a temperature of 1323K. In reference to
Fig. 1(c) & (d), the SGE reports the width of the pattern
at its widest point in zero-field conditions as 0.10mm,
which is consistent with our simulation [2].

For a given propagation speed, there is an associated
pattern with a given splitting distance. Lower speeds
yield longer flight time to interact with the magnets,
thus splitting more. As a result, the final shape is an
accumulation of these sub-patterns following the speed
distribution. The end-patterns associated with vmax and
vmin are shown in Fig. 6. Distinct color bands are seen
for the given speeds, where the overlap is explained due
to the initial angular distribution of velocities. In the
large N limit, the end-pattern on the detector is satu-
rated as all the velocities will be sampled. Therefore, we
have selected a uniform distribution of speeds between
vmax and vmin. This assumption is reasonable as Stern
and Gerlach noted the difficulty in developing the detec-
tor film as the deposited silver was too thin to see with
the unaided eye, reporting long irradiation times (eight
hours) and saturating the film [2, 29].

FIG. 6. End-pattern for an ensemble of atoms colored accord-
ing to their initial speeds in the y direction, vy.

In Fig. 1, the simulated length is measured as Lsim ≈
1.7mm in contrast to Lexp. The length of the pattern
is correlated to the initial angular distribution of veloc-

FIG. 7. End-patterns for different distances between the slits
and the upper magnet, zc. Atoms traveling closer to the CE
tip of the upper magnet experience stronger field gradients.

ities and divergence from a collimated beam. In our
simulation, the angular distribution and the divergence,
governed by O, S1, and S2 geometries, determine the
length of the pattern. However, the discrepancy can be
explained by a historical depiction of the full SGE appa-
ratus, showing a series of uncharacterized slits and aper-
tures between O and S1 (see references [14, 24]). These
additional apertures reduce the angular deviations and
shorten the length of the pattern. In support of this as-
sumption, we placed a third slit to test the effect of addi-
tional collimators and observed a reduced length match-
ing the experimental length while maintaining the shape
of the pattern. Because additional slits are not detailed
in the SGE papers, we omitted them for the final pattern.

IV. CONCLUSION

In summary, we modelled the SGE based on the prop-
erties, dimensions, and geometries from the historical pa-
pers and subsequent review studies. The field properties
are calculated using the COMSOL Multiphysics® finite
element analysis tool. We obtained a simulated magnetic
field and gradient agreeing with experimentally reported
values. Using this field, our Monte Carlo method sim-
ulated the atomic trajectories to obtain an end-pattern.
To our knowledge, our simulated magnetic field and end-
pattern are the most accurate numerical descriptions of
the SGE.
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Appendix A: Classical end-pattern

When the magnetic moment of the valence electron of
the silver atom is not considered quantized, the expected
observation on the detection plate is shown in Fig. A.1.

No splitting is observed.

FIG. A.1. Classical end-pattern for an ensemble of atoms with
a non-quantized magnetic moment sampled from an isotropic
distribution.
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