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Abstract
The multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè includes two cascaded
quantum measurements with a nonadiabatic flipper in between. The Frisch and Segrè experiment
has been modeled analytically by Majorana without the nuclear effect and subsequently revised by
Rabi with the hyperfine interaction. However, the theoretical predictions do not match the
experimental observation accurately. Here, we numerically solve the standard quantummechanical
model, via the von Neumann equation, including the hyperfine interaction for the time evolution
of the spin. Thus far, the coefficients of determination from the standard quantum mechanical
model without using free parameters are still low, indicating a mismatch between the theory and
the experiment. Non-standard variants that improve the match are explored for discussion.

1. Introduction

The quantum measurement problem tackles the conundrum of wave function collapse and the
Stern–Gerlach (SG) experiment is considered as the first observation of a quantum measurement [1–6].
While the SG observation was interpreted as proof of quantization of spin [7–9], cascaded quantum
measurements provide a more stringent test of theories [3, 10]. Frisch and Segrè (FS) conducted the first
successful multi-stage SG experiment [1, 11–13] after improving the apparatus from Phipps and Stern [14].
Even though more recent multi-stage SG experiments have been conducted, they differ in the mechanisms of
polarizing, flipping, and analyzing the spin [15–22]. Most experiments designed for precise atomic
measurements use a narrow-band resonant flipper [15] while the FS experiment uses a wide-band
nonadiabatic flipper.

The FS experiment was suggested by Einstein [8, 13, 23], studied analytically by Majorana [24, 25] and
later by Rabi [26]. Majorana investigated the nonadiabatic transition of the electron spin through a
closed-form analytical solution, which is now widely used to analyze any two-level systems [27]. Rabi revised
Majorana’s derivation by adding the hyperfine interaction but still could not predict the experimental
observation accurately. Despite additional theoretical studies into similar problems involving multilevel
nonadiabatic transitions [27–33], an exact solution with the hyperfine interaction included has not been
obtained.

Among the more recent multi-stage SG experiments [16–21], the study most similar to the FS
experiment uses a sequence of coils to obtain the desired magnetic field [16, 17]. The models in these works
not only simplified the mathematical description of the magnetic fields generated by the coils but also fit free
parameters to predict the experimental observations. We choose to model the FS experiment over other
similar experiments because of the simplicity of the nonadiabatic spin flipper and its historical significance.

Here, we numerically simulate the FS experiment using a standard quantum mechanical model via the
von Neumann equation without tuning any parameters and compare the outcome with the predictions by
both Majorana and Rabi. Even though our approach is a standard method of studying such spin systems, our
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results do not match the experimental observations. This discrepancy indicates that either our understanding
of the FS experiment is lacking or the standard theoretical model is insufficient. Recent studies have modeled
the FS experiment using an alternative model called co-quantum mechanics [34–36] without resorting to
free parameters. Despite the existence of several theories regarding the reduction of the wavefunction that
could potentially address the observed mismatch [37–41], this study remains within the orthodox framework
of the standard quantum theory and the Born postulate [3–6].

This paper is organized as follows. In section 2, we present the experimental configuration used by Frisch
and Segrè to measure the fraction of electron spin flip. In section 3, we introduce the von Neumann equation
and the Hamiltonian for the nuclear-electron spin system. Numerical results for the time evolution of the
spins and the final electron spin-flip probability are shown here. In section 5, we compare the numerical
results with previous solutions. Finally, section 6 is left for conclusions. Non-standard variants of the
quantum mechanical model are explored in the appendices to stimulate discussion.

2. Description of the Frisch–Segrè experiment

The schematic of the setup used in the Frisch–Segrè experiment [11, 12] is redrawn in figure 1. There,
magnetic regions 1 and 2 act as Stern–Gerlach apparatuses, SG1 and SG2, respectively, with strong magnetic
fields along the+z direction. In SG1, stable neutral potassium atoms (39K) effused from the oven are
spatially separated by the magnetic field gradient according to the orientation of their electron magnetic
moment µe. The magnetically shielded space containing a current-carrying wire forms the inner rotation
(IR) chamber. The shielding reduces the fringe fields from the SG magnets down to the homogeneous
remnant field Br = 42µT aligned with+z. Inside the IR chamber, a wire placed at a vertical distance
za = 105µm below the atomic beam path carries a time-independent current, creating a cylindrically
symmetric magnetic field. The total magnetic field in the IR chamber equals the superposition of the
remnant field and the magnetic field created by the electric current Iw flowing through the wire. The precise
magnetic field outside the IR chamber was not reported [11, 12]. After SG1, the atoms enter the IR chamber;
we approximate the motion as rectilinear and uniform along the y axis. The rectilinear approximation of
atomic motion within the IR chamber is acceptable since the total displacement due to the field gradients is
negligible, approximately 1µm. In the FS experiment, the magnetic field is time-independent. However, by
approximating the atom as in an inertial reference frame, we consider the field experienced by the atom to be
time-dependent. Along the beam path, the magnetic field is given by

Bexact =
µ0Iwza

2π (y2 + z2a)
ey +

(
Br −

µ0Iwy

2π (y2 + z2a)

)
ez , (1)

where µ0 is the vacuum permeability; the trajectory of the atom is expressed as y= vt, where v is the speed of
the atom and the time is set to t= 0 at the point on the beam path closest to the wire. The right-handed and
unitary vectors

{
ex,ey,ez

}
describe the directions of the Cartesian system depicted in figure 1.

The magnetic field inside the IR chamber has a current-dependent null point below the beam path at
coordinates (0,yNP,−za), with yNP = µ0Iw/2πBr. In the vicinity of the null point, the magnetic field
components are approximately linear functions of the Cartesian coordinates. Hence, the magnetic field can
be approximated as a quadrupole magnetic field around the null point [11, 24]. Along the atomic beam path,
the approximate quadrupole magnetic field is [34, 36]

Bq =
2πB2

r

µ0Iw
za ey +

2πB2
r

µ0Iw
(y− yNP) ez . (2)

For the study of the time evolution of the atom inside the IR chamber both of the fields, Bexact and Bq, are
considered below.

After the IR chamber, a slit transmits one branch of electron spins initially polarized by SG1 and blocks
the other branch. The slit was positioned after the intermediate stage to obtain a sharper cut-off [11]. In the
forthcoming theoretical model, we track only the top transmitted branch, corresponding to those atoms with
spin down (mS =−1/2), at the entrance of the IR chamber and ignore the branch blocked at the exit.
However, the opposite choice of branch (mS =+1/2) yields exactly the same results in this model. The atoms
that reach SG2 are further spatially split into two branches corresponding to the electron spin state with
respect to the magnetic field direction. The final distribution of atoms is measured by scanning a hot wire
along the z axis while monitored by the microscope. The probability of flip is then measured at different
values of the electric current Iw.
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Figure 1. Redrawn schematic of the original setup [11, 12]. Heated atoms in the oven effuse from a slit. First, the atoms enter
magnetic region 1, which acts as SG1. Then, the atoms enter the region with magnetic shielding (i.e. the inner rotation chamber)
containing a current-carrying wire W. Next, a slit selects one branch. Magnetic region 2 acts as SG2. The hot wire is scanned
vertically to map the strength of the atomic beam along the z axis. The microscope reads the position of the hot wire.

Figure 2. Schematic of the model considered in this study. The system consists of two measurements with SG1 and SG2. The inner
rotation chamber that induces nonadiabatic transitions is modeled with the von Neumann equation. The evolution from the end
of SG1 and the filter to the entrance of the rotation chamber is modeled as an adiabatic evolution. Similarly, the evolution from
the exit of the inner rotation chamber to the entrance of SG2 is modeled as adiabatic evolution.

3. Theoretical description

The time evolution of the noninteracting atoms in the beam traveling through the IR chamber of the
Frisch–Segrè experiment is studied using standard quantum mechanics. The whole setup is modeled in
multiple stages as illustrated in figure 2. First, the output of SG1 and the slit is modeled as a pure eigenstate of
the electron spin measurement in the z direction. Since the gradient of the strong field in SG1 is not high
enough, nuclear spin eigenstates do not separate during the flight. Hence, the nuclear state is assumed to be
unaffected by SG1 and the slit. During the flight from SG1 to the entrance of the IR chamber, the state is
assumed to vary adiabatically as in figure 2. The magnetic fields in the transition regions were not reported;
but when the IR chamber was turned off, Iw = 0A, no flipping was observed after SG2 [12]. Therefore, it can
be assumed that outside the IR chamber, the state evolves adiabatically. Later, the atom enters the IR chamber
designed to induce nonadiabatic transitions. The evolution of the state in the IR chamber is modeled using
the von Neumann equation, which is solved using numerical methods. During the flight from the exit of the
IR chamber to SG2, the state is assumed to vary adiabatically as in figure 2. Finally, SG2 measures the
probabilities in different electron spin eigenstates in the z direction according to the Born principle.

The density operator formalism is used for its capability to represent mixed states in quantum systems,
offering a more complete description than pure states alone [42, 43]. The time evolution of the density
operator ρ̂ is governed by the von Neumann equation:

∂ρ̂(t)

∂t
=

1

ih̄
[Ĥ(t), ρ̂(t)] , (3)

where Ĥ(t) is the Hamiltonian of the system and h̄ is the reduced Planck constant. For the time-dependent
Hamiltonian Ĥ(t), we introduce the instantaneous eigenstates

∣∣ψj(t)
〉
and eigenenergies Ej(t) such that

Ĥ(t)
∣∣ψj (t)

〉
= Ej (t)

∣∣ψj (t)
〉
, (4)

3
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where j can take a finite number of values for the spin system considered here. In the basis of the
instantaneous eigenstates of the Hamiltonian, from (3) the matrix elements of the density operator,
ρj,k(t) =

〈
ψj(t)|ρ̂(t)|ψk(t)

〉
, evolve according to

∂ρj,k (t)

∂t
=

[
1

ih̄

(
Ej (t)−Ek (t)

)
−⟨ψj (t)|

∂
∣∣ψj (t)

〉
∂t

+ ⟨ψk (t)|
∂ |ψk (t)⟩

∂t

]
ρj,k (t)

+
∑
l ̸=k

⟨ψl (t) |∂Ĥ(t)∂t |ψk (t)⟩
Ek (t)−El (t)

ρj,l (t)−
∑
l̸=j

⟨ψj (t) |∂Ĥ(t)∂t |ψl (t)⟩
El (t)−Ej (t)

ρl,k (t) . (5)

In particular, the elements in the diagonal ρj,j(t), corresponding to the probabilities of finding the
quantum system in the eigenstate of the Hamiltonian, follow

∂ρj,j (t)

∂t
= 2ℜ

∑
l̸=j

⟨ψl (t) |∂Ĥ(t)∂t |ψj (t)⟩
Ej (t)−El (t)

ρj,l (t)

 . (6)

Generally, the time dependence of the Hamiltonian produces transitions between the instantaneous
eigenstates. However, in the adiabatic approximation

h̄⟨ψl (t) |∂Ĥ(t)∂t |ψj (t)⟩(
Ej (t)−El (t)

)2 → 0 for l ̸= j, (7)

the transitions are suppressed [6, 44, 45]. Therefore, for the adiabatic evolution, the populations in the
instantaneous eigenstates do not change over time:

∂ρj,j (t)

∂t
= 0 . (8)

If the system’s Hamiltonian changes quickly relative to the energy gap, the above approximation fails, leading
to nonadiabatic transitions.

Let us consider the quantum system for a neutral alkali atom, composed of the spin S= 1/2 of the valence
electron and the spin I of the nucleus. In an external magnetic field B, the electron Zeeman term Ĥe describes
the interaction between the electron magnetic moment and the field via [6]

Ĥe =−µ̂e ·B , (9)

where µ̂e is the quantum operator for the electron magnetic moment. Furthermore, µ̂e = γeŜ, where γe
denotes the gyromagnetic ratio of the electron; the electron spin operator Ŝ= h̄

2 σ̂, with the Pauli vector σ̂
consisting of the Pauli matrices

{
σ̂x, σ̂y, σ̂z

}
. Substitutions yield

Ĥe =−γe
h̄

2
σ̂ ·B . (10)

The (2S+ 1)-dimensional Hilbert spaceHe = span(|S,mS⟩), withmS =−S, . . . ,S, and |S,mS⟩ being the
eigenvectors of Ŝz .

The nuclear Zeeman Hamiltonian Ĥn describes the interaction of the nuclear magnetic moment with the
external magnetic field:

Ĥn =−µ̂n ·B , (11)

where µ̂n = γnÎ denotes the quantum operator for the nuclear magnetic moment, γn the nuclear
gyromagnetic ratio for the atomic specie, and Î the nuclear spin quantum operator for spin I. Therefore, we
can write Î= h̄

2 τ̂ , with τ̂ being the generalized Pauli vector constructed with the generalized Pauli matrices
of dimension 2I+ 1, namely

{
τ̂x, τ̂y, τ̂z

}
, satisfying [τ̂j, τ̂k] = 2iϵjklτ̂l. Substitutions produce

Ĥn =−γn
h̄

2
τ̂ ·B . (12)

A basis for the (2I+ 1)-dimensional Hilbert spaceHn can be obtained from the eigenvectors of Îz, such that
Hn = span(|I,mI⟩) withmI =−I, . . . , I.

4
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The interaction between the magnetic dipole moments of the nucleus and the electron gives the
hyperfine structure (HFS) term ĤHFS. In terms of the electron and nuclear spin operators, the Hamiltonian is
written as

ĤHFS =
2π aHFS

h̄
Î · Ŝ , (13)

where the hyperfine constant aHFS reflects the coupling strength.
Then, the total Hamiltonian of the combined system consisting of the electron and nuclear spins under

an external magnetic field is

Ĥtotal = Ĥe + Ĥn + ĤHFS . (14)

The (2S+ 1)(2I+ 1)-dimensional Hilbert space for the combined nuclear–electron spin system is
H=Hn ⊗He = span(|mI,mS⟩); where for simplicity of notation we have dropped the S and I labels.

The Frisch–Segré experiment used 39K; for this isotope, the nuclear spin is I= 3/2, the nuclear
gyromagnetic ratio is γn = 1.2500612(3)× 107 rad/(sT), and the experimentally measured hyperfine
constant is aexp = 230.8598601(3)MHz [46, 47]. The terms of the nuclear–electron spin Hamiltonian Ĥtotal

in (14) are explicitly expressed as [48, 49]

Ĥe =−γe
h̄

2
τ̂0 ⊗

(
Bxσ̂x +Byσ̂y +Bzσ̂z

)
=−γe

h̄

2
τ̂0 ⊗

(
Bz Bx − iBy

Bx + iBy −Bz

)
, (15)

Ĥn =−γn
h̄

2

(
Bxτ̂x +Byτ̂y +Bzτ̂z

)
⊗ σ̂0

=−γn
h̄

2


3Bz

√
3
(
Bx − iBy

)
0 0√

3
(
Bx + iBy

)
Bz 2

(
Bx − iBy

)
0

0 2
(
Bx + iBy

)
−Bz

√
3
(
Bx − iBy

)
0 0

√
3
(
Bx + iBy

)
−3Bz

⊗ σ̂0 , (16)

ĤHFS =
π

2
h̄ aHFS

(
τ̂x ⊗ σ̂x + τ̂y ⊗ σ̂y + τ̂z ⊗ σ̂z

)

=
π

2
h̄ aHFS



3 0 0 0 0 0 0 0
0 −3 2

√
3 0 0 0 0 0

0 2
√
3 1 0 0 0 0 0

0 0 0 −1 4 0 0 0
0 0 0 4 −1 0 0 0
0 0 0 0 0 1 2

√
3 0

0 0 0 0 0 2
√
3 −3 0

0 0 0 0 0 0 0 3


, (17)

in the {|mI,mS⟩} basis, where σ̂0 and τ̂0 are the 2-dimensional and 4-dimensional identity matrices,
respectively. This Hamiltonian has been validated numerically by comparing the eigenvalues with the
solutions from the exact Breit–Rabi formula [50] with respect to the external field.

3.1. Adiabatic evolution
As depicted in figure 2, the system undergoes an adiabatic evolution from SG1 (polarizing magnet) to the
entrance of the rotation chamber, t ∈ [tSG1, ti], as well as from the exit of the inner rotation chamber to SG2
(the analyzing magnet), t ∈ [tf, tSG2]. From (7), we have

ρj,j (tSG1) = ρj,j (ti) , ρj,j (tSG2) = ρj,j (tf) . (18)

The quantum state of the atoms after SG1 and the filter is a pure state for the electron but maximally
mixed for the nuclear spin [26]. Hence, the density matrix is diagonal following

ρ̂(tSG1) =
∑
j

ρinitialj,j

∣∣ψj (tSG1)⟩⟨ψj (tSG1)
∣∣ . (19)

The measurement probabilities at SG2 can be directly obtained from the state at tf from

pj =
〈
ψj (tf)|ρ̂(tf)|ψj (tf)

〉
. (20)

5
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3.2. Nonadiabatic evolution
In the IR chamber, the external magnetic field is not homogeneous; instead, along the beam path the
magnetic field rapidly changes its direction and magnitude. The IR chamber of the FS experiment was
specially designed to induce nonadiabatic variations of the magnetic field [11, 14]. For such behavior the
field has to be sufficiently weak and the variation of its direction sufficiently fast, such that the frequency of
rotation of the magnetic field is large compared to the Larmor frequency [24, 25]. The conditions for
nonadiabatic rotations are satisfied near y= yNP along the beam path [36].

An exact closed-form analytical time-dependent solution for the density operator in the IR chamber has
not been obtained. To calculate a numerical solution, we discretize the von Neumann equation (3). We used
several different differential equation solvers to validate the solutions [51, 52], one of which is the
second-order Runge–Kutta method [53]:

ρ̂

(
t+

∆t

2

)
= ρ̂(t)− ∆t

2

i

h̄

[
Ĥ(t), ρ̂(t)

]
, (21a)

ρ̂(t+∆t) = ρ̂(t)−∆t
i

h̄

[
Ĥ
(
t+

∆t

2

)
, ρ̂
(
t+

∆t

2

)]
, (21b)

where∆t is the temporal step size.

4. Results

In a historical context, Majorana initially attempted to describe nonadiabatic rotations using a model that
only considered the electron Zeeman term [24] and an approximate quadrupole magnetic field (2), leading
to a closed-form solution. Subsequently, Rabi improved upon Majorana’s work by incorporating the effect of
the nuclear spin [26], while maintaining the same approximate magnetic field. In this study, we utilize
numerical methods, as shown in 3.2, to solve the time evolution for both the exact magnetic field and the
quadrupole magnetic field, the latter for comparison with the analytic solutions. In section 4.1, we
numerically solve Majorana’s model; whereas in section 4.2, we solve Rabi’s model, accounting for the
nuclear effects. Our findings reveal that within the IR chamber, the external magnetic field strength is
sufficiently weak that the influence of the nuclear spin cannot be disregarded.

4.1. Excluding hyperfine interaction
We first consider the case when the Hamiltonian Ĥ is Ĥe in (10), excluding the nuclear Zeeman and
hyperfine effects. The analytical asymptotic solution for this model was found using the quadrupole field
approximation by Majorana [24] and applied to the Frisch–Segrè experiment [11]. The flip probability is
given by the well-known Landau–Zener–Stückelberg–Majorana (LZSM) model:

pLZSM = sin2 (α/2) = exp
(
−π
2
k
)
, (22)

where the adiabaticity parameter is defined as (see appendix A for details) [24, 27]

k=
|γe|
v

2πB2
r

µ0Iw
z2a . (23)

Here, we numerically solve this model for both the exact and quadrupole fields. In modeling adiabatic
evolution as discussed in section 3, we introduce an instantaneous eigenstate |ψmS(t)⟩ with the associated
instantaneous eigenenergy EmS(t) =mSγeh̄|B⃗(t)|. As the atom nears the null point, the instantaneous
eigenenergies become asymptotically degenerate, and the state transitions nonadiabatically between the
instantaneous eigenstates as visualized in figure 3.

Figure 4(a) shows the evolution of ⟨ψ1/2(t)|ρ̂(t)|ψ1/2(t)⟩ over the flight of the atom in the IR chamber,
where Iw = 0.1A. The evolution based on the quadrupole field approximation closely follows that based on
the exact field, indicating the accuracy of the field approximation.

Figure 4(b)shows the flip probability of the electron spin observed in SG2 as |ψ1/2⟩ for the exact and
quadrupole fields at different wire currents. The numerical prediction using the quadrupole approximation
agrees exactly with Majorana’s analytical prediction [24] and closely with the numerical prediction using the
exact field. The coefficients of determination R2 between the numerical predictions and the experimental
data are, however,−18.9 and−19.9 for the exact and quadrupole fields, respectively. Therefore, this model
does not predict the experimental observations.

6
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Figure 3. Eigenenergy-based visualization of the nonadiabatic transition of the electron spin. The initial electron spin is in the
mS =−1/2 state. As the atom nears the null point, the field strength reduces. When eigenenergies converge, the rapid field
rotation triggers a nonadiabatic transition. In the quadrupole field approximation, the nonadiabatic transition can be described
through the Landau–Zener–Stúckelberg–Majorana (LZSM) model [24, 27].

Figure 4. Electron spin only model, where hyperfine interaction is ignored. (a) Time evolution of ⟨ψ1/2(t)|ρ̂(t)|ψ1/2(t)⟩ for the
exact and quadrupole fields at the wire current Iw = 0.1A. (b) Flip probability of the electron spin versus the wire current. The
numerical simulations match Majorana’s prediction [24] but not the experimental observation [11].

4.2. Including hyperfine interaction
We now generalize the Hamiltonian Ĥ to Ĥtotal in (14) by including both the nuclear Zeeman and hyperfine
effects. The total spin for the system assumes the values of F= I± 1

2 . Let the instantaneous eigenstate
∣∣ψj(t)

〉
be |ψmI,mS(t)⟩.

Building on Majorana’s work, Rabi developed an asymptotic solution that incorporates the influence of
the nuclear spin [26]. Rabi’s approach has been visualized in figure 5. For weak magnetic fields, pairs of
eigenstates with different F values are too far apart in eigenenergies to nonadiabatically transition to each
other. In contrast, the eigenstates with the same F values become asymptotically degenerate as the atom
approaches the null point. Therefore, eigenstates within each F manifold nonadiabatically couple to each
other, and the approximation in (7) no longer holds. Rabi solved the nonadiabatic transition in each F
manifold as a single rotation in a (2F+ 1)-dimensional Hilbert space. The flip probability between
individual eigenstates (mF →m ′

F) after a rotation can be calculated using the Wigner d-matrix [26, 54]:

pFmF,m ′
F
(α) = |dFmF,m ′

F
(α) |2, (24)

where the angle of rotation can be found through

sin2 (α/2) = e−
π
2 k

′
. (25)

The adiabaticity parameter k′ is approximated as

k ′ ≈ 1

2I+ 1
k , (26)

7
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Figure 5. Eigenenergy-based visualization of the nonadiabatic transition of the nucleus and electron spins. The initial state is in a
mixture ofmS =−1/2 states. As the atom approaches the null point, the state mostly adiabatically transitions into low-field
eigenstates. Near the null point, when the F= 2 states have similar eigenenergies, nonadiabatic transitions occur. As the atom
leaves the null point region, the state again follows adiabatically to the high-field eigenstates. However, a portion of the population
reaches themS =+1/2 states due to the nonadiabatic transition. When the quadrupole field is used, the nonadiabatic transition
can be modeled by Rabi’s derivation [26].

Figure 6. Nucleus-electron spin model, where the nuclear effects are included. (a) Evolution of the populations for the exact field
within the IR chamber at Iw = 0.3A. Near the null point, the populations exchange between |ψ−3/2,−1/2(t)⟩ and states with
mS =+1/2. Far from the null point, the evolution of the state is mostly adiabatic. (b) Flip probability of the electron spin for the
exact and quadrupole fields. The numerical predictions do not match the experimental observation well.

which accounts for the modified Landé g-factor.
The total transition probability between themF =−F state and themF ̸=−F states is found with a

summation:

pRabi =
1

2I+ 1

∑
mF ̸=−F

pFmF,−F , (27)

where the prefactor denotes the initial populations, which are assumed to be equal. The maximally mixed
initial state is given by

ρ̂(ti) =
1

2I+ 1

∑
mI

|ψmI,−1/2 (ti)⟩⟨ψmI,−1/2 (ti)| . (28)

Figure 6(a) illustrates the evolution of the populations, ⟨ψmI,mS(t)|ρ̂(t)|ψmI,mS(t)⟩, around the null point.
The state follows the instantaneous eigenstates adiabatically during the majority of the flight. Above the wire,
there is a small nonadiabatic evolution that recovers. Hence, the majority of the nonadiabatic transition
occurs around the null point. Apart from the behavior immediately above the wire, the assumption that the
state follows the instantaneous eigenstates outside the null point is accurate. For a lower current, where the
null point is closer to the wire, the behavior right above the wire affects the transition near the null point.
Therefore, the quadrupole approximation for the low currents is inaccurate (to be shown below).

8



New J. Phys. 26 (2024) 073005 S S Kahraman et al

Figure 6(b) shows the flip probabilities predicted by the numerical solution in comparison to Rabi’s
analytical solution [26] and the experimental observation [11]. The inaccuracy of the quadrupole
approximation explains the discrepancy between the numerical solutions in figure 6(b). Furthermore, the
numerical solution with the quadrupole approximation matches Rabi’s solution as expected. The coefficients
of determination R2 of our model for the exact and quadrupole fields in relation to the experimental
observation are 0.19 and−0.67, respectively. Our standard quantum mechanical model or Rabi’s solution,
even if hyperfine interaction is considered, does not predict the experimental observation well in the high
current regime.

5. Discussion

As a natural extension of the first SG experiment, FS aimed to implement cascaded quantum measurements
using two SG apparatuses with a nonadiabatic spin flipper in between. Since the SG apparatuses here cannot
distinguish nuclear eigenstates [11], it was conceivable for Majorana to ignore the nuclear effect [24].
However, as shown in section 4.1, such an electron-only model cannot predict the FS observations. Along the
beam path, the atom enters a magnetically weak region where the effect of the nuclear spin is critical as
shown in section 4.2. While factoring in nuclear effects greatly enhances the theory-experiment match, it still
fails to model the highly nonadiabatic regime. Regarding the decrease of the flip probability as a function of
increasing current in the high-current regime, FS mentioned that it could be observed if there was a remnant
field along the propagation axis [12]. In appendix A, we fit the observations with the remnant field as a free
parameter disregarding the reported value.

Furthermore, the peak flip probability in the experimental data exceeds 1/4 while the theoretical models
here cannot. There are at least two possibilities for the theoretical model to exceed 1/4. Either the initial
nuclear state is not maximally mixed as in (28) or the hyperfine interaction strength, aHFS, is orders of
magnitude smaller. Surprisingly, recent semi-classical studies [34–36] have been able to predict the
Frisch–Segrè observations without fitting.

In appendix B, we have considered various other initial nuclear states. Since SG1 cannot distinguish
nuclear eigenstates, one might question how the nuclear state must be modeled after SG1 and the slit. In
appendix C, we consider different hyperfine interaction strengths. The hyperfine interaction term, first
written by Fermi, uses an interaction strength, aHFS, theoretically calculated via the Fermi contact interaction
[55, 56]. Using such theoretical values to model the FS experiment can result in flip probabilities higher than
1/4. Ultimately, none of the variants of standard quantum mechanical approaches in the appendices follow
the reported experiment but have been explored to stimulate discussion.

6. Conclusions

Simulating the FS experiment [11, 12] using a standard quantum mechanical model has yielded the
following conclusions:

• The FS observations cannot be replicated by modeling only the electron spin without hyperfine coupling
(section 4.1). Considering hyperfine coupling significantly improves the predictions (section 4.2).

• The FS observations cannot be closely replicated by modeling the atom as a pair of electron and nuc-
lear spins without modifying the reported experimental parameters (appendix A), the initial nuclear state
(appendix B), or the hyperfine interaction coefficient (appendix C).

Based on some of the non-standard variants that can improve the model prediction of the FS observation
(see Appendices), one might question the following:

• What is the nuclear spin state before and after each SG apparatus? How does the nuclear spin state affect the
electron spin-flip?

• Do we need a more sophisticated model of the atom (especially, the nucleus) to understand and predict the
SG and nonadiabatic FS experiments?

• Do the SG apparatuses in the FS experiment truly follow the Born principle? Is there a (hidden) variable,
such as the nuclear spin, affecting the FS measurement?

Despite the prevalent understanding of multi-stage Stern–Gerlach experiments, our models here fall short of
accurately explaining the initial experiments [11, 12]. Later multi-stage SG experiments include different
designs of the SG apparatuses and spin flippers, and the associated models used free parameters for fitting
[16–21]. Given the foundational importance of the multi-stage SG experiments as cascaded quantum

9
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measurements, we believe that the mismatch between the theory and the experiment merits further
investigation.

Acknowledgments

We thank Xukun Lin for scrutinizing the source codes, Alexander Bengtsson for the inspiring discussions,
and the anonymous reviewers for the stimulating questions. This project has been made possible in part by
Grant Number 2020-225832 from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley
Community Foundation.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Supplemental material

Our source codes are available online [57].

Appendix A. Fitting for the remnant field

The remnant field in the IR chamber is reported to be Br = 42µT aligned with+z direction. However,
accurate measurement of the magnetic field in the y direction was stated to be a challenge [12]. Therefore, if
we allow this remnant field to be a 3-dimensional fitting parameter Bfit = (Bx,By,Bz), it is possible to
improve the model prediction of the FS experimental observation. Without hyperfine interaction, the system
is reduced to two levels, leading to a closed-form solution similar to the Majorana solution for the
quadrupole field [27, 58–60]. The 2D null point where only the y and z components of the field vanish is
located at the coordinates of

(x ′NP,y
′
NP,z

′
NP) =

0,
µ0IwBz

2π
(
B2
y +B2

z

) ,−za −
µ0IwBy

2π
(
B2
y +B2

z

)
 . (A1)

The total magnetic field in the IR chamber can be approximated [36] around this null point to the first
order as

Bq,fit = Bx ex +

4πByBz

µ0Iw
(y− y ′NP)−

2π
(
B2
z −B2

y

)
µ0Iw

z ′NP

 ey
−

2π
(
B2
z −B2

y

)
µ0Iw

(y− y ′NP)+
4πByBz

µ0Iw
z ′NP

 ez . (A2)

Using the new approximated field, Bq,fit, the Hamiltonian takes the form

Ĥfit (t) =−γe
h̄

2
Bq,fit · σ̂ =

(
c0 + c1t a0 − i (b0 + b1t)

a0 + i (b0 + b1t) −(c0 + c1t)

)
(A3)

with

a0 =−γe
h̄

2
Bx , (A4a)

b0 = γe
h̄

2

2π

µ0Iw

(
2ByBzy

′
NP +

(
B2
y −B2

z

)
z ′NP

)
, (A4b)

b1 =−γe
h̄

2

4π

µ0Iw
ByBzv , (A4c)

c0 = γe
h̄

2

(
Bz +

4π

µ0Iw
ByBzza

)
, (A4d)

c1 = γe
h̄

2

2π

µ0Iw

(
B2
y −B2

z

)
v , (A4e)

where we have replaced y with vt to obtain the time dependence.
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To transform into the LZSM formulation, we need to rotate the coordinate system. Let us first rotate
around ex by θx using a matrix of R̂x = e−iσ̂xθx/2. This rotation moves all of the time dependence into the
diagonal terms. Then, we can rotate around ez by θz using a matrix of R̂z = e−iσ̂zθz/2. The final rotated
Hamiltonian can be calculated as Ĥrot(t) = R̂zR̂xĤfit(t)R̂†

x R̂
†
z . Now, we still need to shift the time coordinate

to avoid time-invariant diagonal terms. For this purpose, let us define a new variable t ′ = t+ ts. The rotated
and shifted Hamiltonian is given as

Ĥrot (t
′) = R̂zR̂xĤfit (t

′ − ts) R̂
†
x R̂

†
z =

(
−ν

2 t
′ −∆

2
−∆

2
ν
2 t

′

)
, (A5)

with

θx =arctan

(
b1
c1

)
, (A6a)

θz =arctan

(
b1c0 − b0c1

a0
√
b21 + c21

)
, (A6b)

ts =
b0b1 + c0c1
b21 + c21

, (A6c)

ν =− 2
√
b21 + c21 , (A6d)

∆=− 2

√
a20 +

(b1c0 − b0c1)
2

b21 + c21
. (A6e)

The solutions to the rotated and shifted system can be given by the parabolic cylinder functions using
Zener’s solution. Following the assumptions of adiabatic evolution outside the null point region, the
probability of flipping can be found with the Majorana formula pLZSM in equation (22), where the
adiabaticity parameter is

k=
∆2

νh̄
= 2

|γe|
v

(
Byza +

(
B2
y +B2

z

) π z2a
µ0Iw

+
B2
x +B2

y

B2
y +B2

z

µ0Iw
4π

)
. (A7)

Note that setting Bfit → (0,0,Br = 42µT) yields equation (23) as expected. This probability can be optimized
to find the best fit Bfit ≈ (16.36,−1.28,53.81)µT. The coefficients of determination in this case are
R2 = 0.97(0.92) for the quadrupole (exact) field.

Furthermore, the Rabi equation (27) can be used to obtain a better match. Within a reasonable range of
fields, the optimized parameters would be Bfit = (0,31.25,66.25)µT achieving coefficients of determinations
R2 = 0.61(0.72) for the quadrupole (exact) field.

Alternatively, the exact field can be fully modeled with different remnant fields. After a manual search, we
find that Bfit = (−34,−35,50)µT yields a match of R2 = 0.89.

Because remnant fields in the x and y directions were not reported [11, 12], achieving a close resemblance
through fitting may still fall short of accurately modeling the conditions of the reported experiment.

Appendix B. Modified initial states

A recently developed theory [34] matches the experiment well [35, 36] and yields an anisotropic distribution
for the nuclear spin after SG1. Anisotropic distributions for the nuclear spin can be obtained if SG1 and the
slit do not follow the traditional assumptions made in equation (28). Inspired by this work, we explore
various initial states for the nuclear spin in addition to the maximally mixed state. We consider an arbitrary
mixed initial state

ρ̂mixed (ti) =
I∑

mI=−I

dmI |ψmI,−1/2 (ti)⟩⟨ψmI,−1/2 (ti)| . (B1)

The flip probability for such an initial state can be obtained with

pmixed =
I∑

mI=−I

dmIpmI , (B2)
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where pmI are the flip probabilities if the initial state is a pure eigenstate ρ̂(ti) = |ψmI,−1/2(ti)⟩⟨ψmI,−1/2(ti)|.
Due to this relationship, a simple linear regression can be used to fit the experimental observations. Using the
standard aexp, the regression is optimized at (d3/2,d1/2,d−1/2,d−3/2)≈ (0.285,0,0.643,0.072) with an
R2 = 0.67 for the exact field.

Furthermore, one can consider pure instead of mixed nuclear initial states. Various pure states have been
tried here; however, the coefficients of determination are not better than that for the mixed state. Specifically,
pure states with a uniform probability distribution across the nuclear eigenstates yield final flip probabilities
that are the same as those in figure 6.

Appendix C. Modified HFS coefficients

Up to now, we have used the experimentally measured HFS coefficient value, aexp = 230.8598601(3)MHz
[46], which does not accurately predict the experimental observation by Frisch and Segrè. Here, we attempt
to improve the match by modifying the hyperfine coefficient.

One way to calculate the HFS coefficient is to use the Fermi contact interaction as follows [6, 48, 55, 61]:

2πh̄ aHFS =−h̄2
2µ0
3
γeγn|ψ (0) |2 , (C1)

where ψ(r) denotes the spatial wave function of the electron. The wave function for the 4s1 electron in 39K
does not have an exact solution. However, various approximations are available [34, 62, 63], yielding the
following HFS coefficients:

a1 =−h̄
µ0γeγn
4π2R3

≈ 355kHz , (C2a)

a2 =−h̄
8µ0γeγn
3π4R3

≈ 384kHz , (C2b)

a3 =−h̄
28.4µ0γeγn

6π2R3
≈ 6.72MHz , (C2c)

where R= 275pm is the van der Waals radius for 39K. Another set of values for aHFS are obtained on the basis
of an alternative averaging method [34]:

a4 =−h̄
5µ0γeγn
32π2R3

≈ 222kHz , (C3a)

a5 =−h̄
2µ0γeγn
3π4R3

≈ 95.9kHz , (C3b)

a6 =−h̄
0.138µ0γeγn

2π2R3
≈ 98.0kHz . (C3c)

All of these values along with the experimental value, aexp, have been considered. Using the maximally
mixed initial state, the best match is obtained for aHFS = a3 with R2 = 0.20 for the exact field. Fitting for the
initial state using the exact field as in appendix B yields the best match for aHFS = a1 with R2 = 0.77.
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