Monte Carlo model and single-scattering
approximation of the propagation of polarized
light in turbid media containing glucose
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We present a single-scattering model as well as a Monte Carlo model of the effect of glucose on polarized
light in turbid media. Glucose alters the Mueller-matrix patterns of diffusely backscattered and
forward-scattered light because glucose molecules rotate the polarization plane of linearly polarized light.
For example, the angles of rotation in Mueller-matrix elements S,; and S,, are linearly related to the
concentration of glucose and increase with the source—detector distance. In the nondiffusion regime, the
two models agree well with each other. In the diffusion regime, the single-scattering model is invalid,
but there still exists a linear relationship between the angles of rotation in the Mueller-matrix elements

and the concentration of glucose, which is predicted by the Monte Carlo model.
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1. Introduction

Interest in research on the propagation of polarized
light in randomly scattering media has increased re-
cently because of the potential applications of polar-
ized light in diverse fields. Many studies have
suggested that relevant information can be obtained
by analysis of the response of a medium to a polarized
optical source.’3 One can vary the polarization of
the source and detect 16 independent intensity mea-
surements,+5 which are sufficient to yield the Mueller
matrix that completely determines the transforma-
tion of any incident polarization state. Several re-
search groups have developed numerical and
analytical methods that describe the propagation of
polarized light in scattering media. Ambirajan and
Looké developed a Monte Carlo model for multi-
ple scattering of a polarized light beam. Hielscher
et al.”® used a Stokes—Mueller approach to study
multiply scattered polarized light. Bartel and
Heilscher? investigated the backward Mueller matrix
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of highly scattering media. Yao and Wang!® pro-
duced the animation sequences of propagation of po-
larized light in turbid media. The symmetry of the
polarization patterns from incoherent backscattered
light as well as the relationship among the 16 matrix
elements have also been studied in detail and can be
used to predict the patterns and to expedite simula-
tions.311.12  All these groups of researchers used
Monte Carlo algorithms based on the Stokes—Mueller
formulation.

Optical approaches to studying turbid media in the
presence of chiral components have generated inter-
est because of their potential use in noninvasive glu-
cose monitoring for diabetes patients. Tissue
glucose levels have been correlated with scattering
coefficients based on changes in the refractive indices
of extracellular fluids.13-15 Mehrubeoglu et al. mea-
sured the cross-polarization patterns with glucose in
turbid media.’® Zhou and Schmitt,'” Cote and co-
workers,1819 Chou et al.,2021 and Pu et al.22 used
highly sensitive polarimetric technology to discern
the small rotations in polarized light associated with
physiological glucose levels. All their methodologies
are designed to measure glucose concentrations in
the aqueous humor by taking advantage of the low
scattering coefficient of the eye. However, there is a
time lag between the glucose concentrations in the
blood and in the aqueous humor during the rapid
shifting of blood glucose concentration, and it is dif-
ficult to couple light through the eye. Ablitt et al.



examined the behavior of polarized light scattered by
turbid media that contained small chiral spheroidal
particles, using Monte Carlo simulations.2? Studin-
ski and Vitkin studied the correlation between con-
centrations of chiral molecules in turbid media and
the properties of polarized light emerging from turbid
media, such as the optical rotation of the linearly
polarized fractions and the degrees of polarization.24

As a chiral material, glucose has preferential hand-
edness because it has an asymmetric molecular struc-
ture. As a result, glucose interacts differently with
right and left circularly polarized light, resulting in
rotation of the linear polarization plane.?’ In a
highly scattering condition, when the direction and
the polarization of the incident beam are randomized,
it is difficult to detect the rotation of the linear po-
larization plane because the fraction of information-
containing light is small compared with the amount
of randomized information-degrading light. With a
poor signal/noise ratio, detection of the small rota-
tions of the polarization plane caused by glucose in
physiological levels is quite difficult.

We found that the change in the polarization of
reemitted light caused by glucose can also be ob-
served from Mueller-matrix patterns of the turbid
media. The Mueller-matrix patterns of diffusely
backscattered and forward-scattered light are altered
in relation to the concentration of glucose levels in
turbid media, which makes it possible to monitor the
concentration of glucose noninvasively in highly scat-
tering tissues other than the low-scattering aqueous
humor of the eye.

In this paper we present a theoretical study of the
contribution of glucose to Mueller-matrix patterns of
turbid media. In the following analysis it is as-
sumed that the scattering events are independent,
and no coherence effects are considered. First, we
introduce our single-scattering approximation. We
apply this model to predict the Mueller-matrix pat-
terns of turbid media that contain glucose; we use
formulas from single-scattering approximations to
calculate the rotations of some Mueller-matrix ele-
ments S; ; (i =1,2,3,4;7=1,2,3,4). Second, we
implement Monte Carlo simulations based on Mie
theory. The two models are compared in the single-
scattering regime. The correlation between the ro-
tation angles of the matrix elements and the
concentration of glucose are discussed.

2. Single-Scattering Approximation

In this section we assume that the scattering of light
is incoherent and that reemitted light comes primar-
ily from single-scattering events in the medium,
which means that light exits the medium after one
scattering event. Any interaction between light and
the medium’s surface is neglected. We also assume
that every photon packet that exits the medium
reaches the detector, no matter its propagation angle
and position as it exits the medium.

Our single-scattering model for propagation of po-
larized light is similar to the numerical method in-
troduced by Rakovic et al.? The geometry of a
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Fig. 1.

Geometry of a single-scattering event.

backward single-scattering event is shown in Fig. 1.
A narrow pencillike beam propagates downward
along the z axis into a plane-parallel medium with
thickness h. Scattering events occur at the lower
half-space of the medium, —2 =z = 0. Inasmuch as
we assume that the light is scattered in the turbid
medium by spheres, Mie theory can be used to de-
scribe the scattering process, and a scattering matrix
takes the form26

a(®) bB) 0 0
b(®) a(®) 0 0
0 0 d(®) —e(®)
0 0 e(®) dO)

M(®) = (1)

When the spheres are small compared with the wave-
length of the light (as in Rayleigh and dipole scatter-
ing), the above coefficients can be reduced to2

3
= + 2
a(0) 16 (1 + cos®®),

m

3
= — (— + 2
b(0) 16m (=1 + cos“®),

d(®) = i cos0O, e(®)=0. (2)
81

A rotation matrix, R,(}), transforms the Stokes vec-
tor in the reference plane into one in the scattering
plane before scattering. Another rotation matrix,
R, (), transforms the Stokes vector of light back into
the reference plane from the scattering plane when
light exits the sample surface. Both of these rota-
tion matrices have the following form:

1 0 0 0

10 cos(2) —sin(2¢) O
RO =10 sin@¢) cos2d) 0 3)

0 0 0 1
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The Mueller matrix that represents the contribution
of glucose to a certain propagation path can be con-
sidered the matrix for circular birefringence R(6):

elements of the forward-scattered and backscattered
Mueller matrix. For backscattering,

1 0 0 0 0
R(6) = 0 cos(20) —sin(20) 0 @ S(p, ¢) = P«sf dz{(1/r*)exp[ —pr(|z| + 7)]
0 sin(20) cos(20) 0]’ —h
0 0 0 1 X Ry(d)T(0,1, 05, O)Ry(d)}, (7)
Tij(ely 627 ®)
a b cos 20, —b sin 20, 0
| b cos 26, a cos 26, cos 20, — d sin 20, sin 20; —d sin 260, sin 26, — @ sin 26, sin 26, e sin 20,
b sin 20, a sin 20, cos 20; + d cos 20, sin 20; —a sin 20, sin 20; + d cos 20, cos 20; —e cos 20, |’
0 e sin 20, e cos 20, d
(8

where 6 denotes the optical rotation caused by glu-
cose molecules, which is the product of the optical
rotation degree [(ORD) the specific rotation of glucose
for a certain wavelength of light], the path length of
light, and the concentration of glucose .

If P, is the Stokes vector of the incident laser beam
with respect to the laboratory coordinate system (x, y,
z), backscattered Stokes vector I”® of the total radi-
ance received by the detector at the position (p, ¢, z =
0) on the upper surface of medium will be

0
I"(p, ¢) = Msf de{(1/r*)expl —pr(|2| + 7)]

~h

X Ry($)R(6:)M(O)R,(6,)R()Po},  (5)

where 7 = Vp? + 2% tan ® = p/z; p, and .y are the
scattering coefficient and the extinction coefficient,
respectively; and 6; =z X « X ORD and 6, = r X a X
ORD are the angles of rotation according to paths z
and r, respectively.

Similarly, forward-scattered Stokes vector I' of the
total radiance received by the detector at position (p,
&, z = h) on the bottom surface of the medium will be

I®(p, ¢) = MSJ dz{(1/r*)exp[ —ps(|2| + 7)]
~h

X Ry(—=$)R(6;)M(O)R(0)R1()Po}.  (6)

The only difference from the backscattered Stokes
vector that should be noticed is the appearance of the
negative sign in R,(—¢) because the second rotation
that transforms the Stokes vector back to the refer-
ence plane should be anticlockwise, which is a nega-
tive rotation compared with the first positive rotation
in R, (¢).

From Egs. (1)—(6) we can obtain the formula for all
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where a, b, d, and e are a(0), b(0), d(0), and e(0),
respectively, and subscripts i and j are indexed from
1 to 4.

From Egs. (7) and (8) we can predict the pattern of
every element in the effective backscattering Mueller
matrix of a turbid medium with a certain concentra-
tion of glucose. As for the forward-scattering
Mueller-matrix elements, the deduction process is
the same.

For a glucose concentration o = 0 we can simplify
the Mueller-matrix expression obtained by the
single-scattering approximation as follows:

0 dz
Sij(pa ¢) = IJ‘SJ. F exp[_PvT(|Z| + r)]Fij7
—h

Fi1=a(0),
Fi; = b(0)cos(2d),
Fi3 = —b(0)sin(2¢),

F,=0,
Fy = Fys,
Fyy = a(0®)cos(2d)cos(2d) — d(®)sin(24)
X sin(2)
_a(®) —d(0)
B 2
+ M cos(4d),
Fy = —a(®)cos(2)sin(2¢)
— d(0O)cos(2d)sin(2¢)

= —[a(0) + d(0)]sin(4d),
Fy = e(0)sin(2¢),
F3 = —Fy,
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Fig. 2. Single-scattering profiles of the backscattering Mueller-matrix patterns from a turbid medium.

Fgyy = —Fy,
Fi3 = —a(0)sin(2¢)sin(24)

+ d(0)cos(2¢)cos(2d)

_at0) - )
2

. M cos(4d),
Fi, = —e(0)cos(2¢),
F,=0,
Fpy=Fy,
Fy=—Fy,
Fo = d(O). 9

Based on Eqgs. (9), Fig. 2 shows profiles of the azi-
muthal dependence of the backscattering Mueller-
matrix patterns from turbid media without glucose.
The results in Fig. 2 are similar to the analytical
expressions given by Rakovic et al.? and Rakovic and
Kattawar.2 The single-scattering approximation

model, at least qualitatively, provides us an effective
method with which to emulate the scattering pat-
terns from a suspension of polystyrene spheres as
measured in experiments.3-11

Among the 16 elements of the backscattering Muel-
ler matrix, we discuss S14, S13, So1, and Ss; in detail.
We expand them into the following equations:

Sualps &) = 1w, cos(20) fo dzi(1/r)
X eXp[—uT(\ZIZ +7)]cos(26,)b(0)}
~ . sin(24) J "
 expl—pallz] + 1) sin(20,5(0)),
Suslps &) = . sin(20) f "
X eXp[—uT(Iizl +7)]cos(26,)b(0)}

+ s cos(2¢) J.O dz{(1/r?

~h

1 February 2002 / Vol. 41, No. 4 / APPLIED OPTICS 795



X exp[—p,T(|z| + r)]sin(26,)6(0)},
Soi(p, ) = ;s cos(2d) f dz{(1/r%
—h
X exp[—pr(|z| + r)]cos(26,)b6(0)}

i sin(26) f d={(1/r%)

~h

X exp[ —pr(|z| + 7)]sin(260,)b(0)},

0
Saip, ) = p, sin(24) f dz{(1/r7

—h

X exp[ —pr(|z| + 7)]cos(20,)b(0)}
+ iy cos(2) f " (1)
~h

X exp[ —pr(|z| + 7)]sin(26,)6(0)}.
(10)

There are two integrals from —#A to 0 in each of Egs.
(10) that can be reduced to a sine and a cosine func-
tion. The following simple expressions will be ob-
tained:

S12(p, ) = Ki(p, @, pr, py)cos(Zd + 26,),
Sis(p, &) = Ki(p, o, pr, wy)sin(2¢ + 26,),
So(p, &) = Ks(p, o, pp, pg)cos(2 + 26,),
Sz1(p, ) = Ky(p, o, pp, po)sin(2¢ + 262), (11)

where
0 dz
Kl(p’ (b, Qa, W, p-'s) = ({J ﬁ eXp[_PvT(|Z| + 7')]
~h
X sin(261)b(®)]
0 dz
+ [J 2 expl—pr(|z] +7)]
o 2\ 1/2
X cos(261)b(®)] ) ,
0 dz
Ky(p, &, o, pup, 1) = ([J. o) exp[—pr(|z| + 7)]
X sin(262)b()}
0 dz
+ U 2 expl—pur(|z| + )]
~h

1/2

) (12)

X cos(262)b()]
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tan(260,)

de{(1/r*)expl —pr(|2| + r)lsin(26,)b(©)}

ki

dz{(1/r®)exp[ —p.r(|2| + r)]cos(26,)b(O)}
tan(26,

de{(1/r*)exp[ —pr(|2| + 7)]sin(2602)b(0)}

dz{(1/r*)exp[ —p.r(|z| + r)]cos(20,)b(0)}

j
h
f
—h
JO
—h
j
—h

When the concentration of glucose equals zero, these
four elements will be

S1a(p, &) = Ki(p, &, pup, py)cos(2d),
S1s(p, ¢) = Ki(p, o, pr, py)sin(26),
Salp, &) = Ky(p, a, pr, ps)cos(2¢),
Sai(p, &) = Ki(p, o, pr, pyisin(2d),  (14)

which are cloverleaflike patterns shown in Fig. 2.

From Egs. (11)—(14) one can see that the glucose in
turbid media causes the phase shifts 6; and 6, in the
azimuthal functions of matrix elements S;,, S;5 and
Ss1, S31, respectively. Phase shifts 6; and 6, in co-
sine and sine functions in Eqgs. (11) are expressed as
rotations of the matrix patterns, which are shown in
Fig. 3. The angles of rotation, 6,, of elements S,
and S5 and 6,, of elements S,; and Sj;, are deter-
mined mainly by the integrations of 6;, which depend
only on the path along z, and 6,, which depend only on
the path along r, where both 6; and 6, are propor-
tional to the concentration of glucose. One can also
expect that, when source—detector distance p in-
creases, 0; and 0, will increase at different rates.
During detection of positions far away from the inci-
dent point (p > 1/py), 6; approaches a constant while
0, has a nearly linear relationship to source—detector
distance p. When p approaches 0, 5(0) in Eqgs. (11)-
(14) approaches 0; consequently, S5, Si3, So1, and
S5, approach 0 and indicate no rotations.

3. Monte Carlo Simulation

We used a Monte Carlo simulation based on Mie
theory to simulate the effective back-scattering Muel-
ler matrix of a scattering medium containing spher-
ical scatters. Our Monte Carlo code is based on an
algorithm developed previously.1927 The scattering
Mueller matrix, M(0), is given by Mie theory instead
of by the Rayleigh scattering described in Section 2,
whereas R(¢$) and R(0) remain the same.26 Element



a=300

a=0;

Sy (00)

Min

The size of each intensity map is 4 cm X 4 cm. Absorption coefficient p,, 0.01 cm™!; scattering coefficient ., 1 cm™

a=0; a =300

S14 (RO-LO)

__[S;4 (RH+LV)(RV-+L.

IS4 (RP+LM)(RM+LP

Max

Fig. 3. Comparison of results of a Monte Carlo model of a backscattering Mueller matrix from turbid media with and without glucose.

1. concentration of

glucose «, 300 g/dL. The symbols to describe S;; consist of double-polarization states with the input polarization state denoted by the

left-hand letter and the output polarization state denoted by the right-hand letter.

O, unpolarized light; H, horizontally linear polar-

ization; V, vertically linear polarization; P, linear polarization oriented in the +45° direction; M, linear polarization oriented in the —45°

direction; R, right-circular polarization; L, left-circular polarization.

a(®) in M(O) satisfies the following normalization
requirement:

o f (©)sin(©)dO = 1. (15)

0

For each scattering event, the sampling of polar angle
® and azimuthal angle ¢ satisfies the following
probability-density function:

p(0, ¢) = a(®) + b(O)[S; cos(2d) + 83 sin(2¢)]/S,,
(16)

which is a function of incident Stokes vector S =[S,
S2’ S3, S 4]T-

For statistical results, large quantities of photon
packets (107) are traced from a pencillike beam along
the z axis. In the following simulations, the radius
of spheres in the medium is 125 nm, the refractive
index n of the medium is 1.33, the refractive index n
of polystyrene spherical particles is 1.57, the wave-
length of light \, in vacuo is 594 nm, and the specific

rotation of glucose at this wavelength is ORD = 52.7°
dm ! (g/mL) t.28

The Monte Carlo simulation results for the back-
scattering matrix are shown in Fig. 3. Sixteen ma-
trix elements of the turbid medium without glucose
are compared with the matrix elements of the turbid
medium with glucose while other optical parameters
are kept the same. The size of each intensity map in
Fig. 3is 4 cm X 4 cm. To ensure that most photon
packets will exit the medium from the upper or the
bottom surface after one scattering event, absorption
coefficient ., is set at 0.01 cm ™! and scattering coef-
ficient u, is set at 1 cm ™. The thickness of the
turbid medium is set at 1 cm. Through calculation,
anisotropic factor g is 0.134; the mean free path is
0.99 cm, and the transport mean free path is 1.142
cm. Because the rotations in polarized light caused
by the physiological glucose levels are small, we set
glucose concentration a at 300 (g/dL) to permit the
differences in the matrix patterns to be observed.

The right-hand map in each cell in Fig. 3 shows
that some intensity patterns of the matrix elements
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Fig. 4. Results of single scattering (solid curves) and Monte Carlo
(scattered symbols) models of the azimuthal dependence of back-
ward Mueller-matrix pattern elements (a) S, and (b) Sy;. The
source—detector distances are 0.4 cm and 1.0 cm. Absorption co-
efficient p,, 0.01 cm™?; scattering coefficient p,, 1 cm™*; concen-
tration of glucose, 300 g/dL.

(=]

have obvious rotations about the incident point,
which is at the center of each map. Figure 4 shows
a comparison of the azimuthal dependence of S,
and S,; along 0.4- and 1-cm source—detector dis-
tances. Intensity distributions of S;, and S,; fit
well with the cosine functions of two times azimuth
angle ¢ (from 0 to 360°). The rotation of the pat-
terns caused by glucose can be seen from the phase
shifts of the cosine functions, which are marked in
Fig. 4 and explained in detail in Eqgs. (11) as 6, and
0y, respectively. One may notice that the rotation
of Sy, and Sj; increases more rapidly than the ro-
tation of S;, and S5 as source—detector distance p
increases, in good agreement with our discussion
above of the single-scattering approximation. In
Section 4 we compare the numerical results from
the Monte Carlo simulation and the single-
scattering model.
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Fig. 5. Rotation angles 6; and 6, for changes in backward
Mueller-matrix elements S, (a) and (b) S,; with changes in the
source—detector distance. Solid curves, results from the single-
scattering model; symbols, results from the Monte Carlo model.
mg, 10 em™%; p,, 0.1 cm™!; thickness of the sample 4, 1 cm; «,
concentrations of glucose.

4. Comparison and Discussion

Through a Mie-theory-based Monte Carlo simulation,
we obtain intensity maps for the 16 matrix elements
in polar coordinates. For each source—detector dis-
tance, the intensities of the S;, and Sy; elements
about a circle are discrete quantities with respect to
the azimuth angle from 0° to 360°. The azimuthal-
dependent distributions of intensities of S;5 and So;
fit the cosine functions with phase shifts 6, and 0,
respectively, which can be compared with the results
calculated from Egs. (12) based on the single-
scattering approximation.

In the simulations shown in Figs. 5—8, the optical
parameters of the turbid media are as follows: ., is
10 em ™%, p, is 0.1 cm™?, anisotropic factor g is calcu-
lated to be 0.134, and the thickness of the sample, A,
is 1 cm.

Figures 5(a) and 5(b) show the rotation of elements
Sis and Sy;, respectively, as they change with



16

11 (%)

10 11 12 13 14 15
Number of scattering events, »

4 5 6 7 8 9
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source—detector distance p from 0 to 2 cm. Glucose
concentrations are set at 200 and 100 (g/dL). The
degrees of rotation obtained by the Monte Carlo sim-
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shown. p,, 10 em ™% w,, 0.1 cm™*; thickness of the sample £, 1 cm.

ulation (symbols) are in good agreement with the
predicted results from the single-scattering model
(solid curves) when source—detector distance p is
0-1.3 cm. In this period, 6,, the rotation of element
S,,, increases with source—detector distance p in a
nearly linear relationship, whereas 6, the rotation of
S, increases at a comparatively lower rate. Ac-
cording to Fig. 1, the path lengths of light increase
with the source—detector distance. When the detec-
tion position is far away from the incident point, the
contribution from multiply scattered photons to the
total backscattered light cannot be ignored. In Fig.
5 a discrepancy appears between the results of the
Monte Carlo simulation and the single-scattering cal-
culation for the period p > 1.3 cm, especially for the
rotation of S;,.

The mean free path of the light in a turbid medium
is1/pp.  As ppincreases, the light, through multiple
scattering, will make a greater contribution to the
intensity patterns of backscattered light, which will
directly influence whether a single-scattering model
can be used. The histogram in Fig. 6 shows the
percentage of I,,, the intensity of light detected after
n scatterings in the turbid medium, in the total back-
scattered light I,,, where the incident light is unpo-
larized. If the incident light is polarized with
various polarization states, the histograms will be
similar. The percentage of intensity from the singly
scattered light is 14%, and the percentage of intensity
from all the multiply scattered light is 85%, which
means that the multiply scattered light represents a
greater contribution to the intensity patterns than
the singly scattered light.

Through the Monte Carlo simulation with the
above parameters, the remaining degree of polariza-
tion of backscattered light comes mainly from light
that has been scattered fewer than 10 times in the
medium, which agrees with the results of Ambirajan
and Look.6 The patterns of the Mueller-matrix ele-
ments that characterize the polarization property
of the sample also come mainly from those weakly
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scattered photons. The backscattering Mueller-
matrix patterns of singly scattered light and multiply
scattered light were simulated separately. Figures
7(a) and 7(b) show the rotation angles of patterns S,
and Sy, respectively, where results of singly scat-
tered light and multiply scattered light are compared
with the predicted results from the single-scattering
approximation model. It is interesting that for sin-
gly scattered light and multiply scattered light the
rotation angles of the pattern S,; are quite similar,
especially when the source—detector distance is
small, though the patterns from multiply scattered
light are weaker than the patterns from singly scat-
tered light (a weak pattern means that the contrast
between the intensities at different positions of the
pattern is small). For matrix element S;,, the dif-
ference in the rotations is obvious for different orders
of scatters, especially when scattering coefficient p, of
the turbid medium is high.

The changes in rotation angles of elements Sy,
with changes in glucose concentration o were simu-
lated by the Monte Carlo (symbols) method and the
single-scattering (solid curves) model, respectively,
as shown in Fig. 8. Here different detection posi-
tions from the incident point are considered (source—
detector distances p are 0.2, 0.4, 0.6, and 1.0 cm).
The two simulation methods are in good agreement
and show that the rotation degrees have a linear
relationship to a.

For highly scattering turbid media, there still ex-
ists a linear relationship between the angle of rota-
tion of the Mueller-matrix elements and the
concentration of glucose, although the single-
scattering model cannot precisely predict the degree
of rotation on this condition. For example, we sim-
ulated backscattering Mueller-matrix element S, for
a turbid medium with scattering coefficient n, = 100
cm !, absorption coefficient p,, = 10 cm ™!, anisotropy
g = 0.134, thickness 2 = 0.04 cm and transport mean
free path [,/ = 1/[p, + p(1l — g)] = 0.010 cm. The
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degree of rotation as a function of the concentration of
glucose is shown in Fig. 9 for various source—detector
distances (p = 0.03, 0.06, 0.12 cm), which are several
times greater than [,'. Therefore the matrix pat-
terns considered here are from the light reflected in
the diffusion regime.

To make the rotation visible in the simulation, as
well as for convenience of comparison, in our discus-
sion we used glucose concentrations much higher
than physiological glucose levels. However, we ex-
pect that the proportionate relationship between the
polarization rotations of patterns and the glucose
concentration holds true for lower glucose levels as
well because the change of backward Mueller-matrix
patterns is linearly related to the rotation of the po-
larization plane, which further has a linear relation-
ship to the concentration of glucose. All the
equations, no matter whether they apply to the
single-scattering model or the Monte Carlo simula-
tions, show this linear relationship between the ro-
tations of matrix elements and the concentration of
glucose. If the concentration of glucose is at a typi-
cal physiological level (80 mg/dL), the source—
detector distance is 0.12 cm, and the other
parameters are the same as those in the simulation of
Fig. 9, the predicted rotation angle of matrix element
S,, will be 3.0 X 10~ * degree. Although the detec-
tion of such a small rotation may be difficult, it is still
possible if some highly sensitive methods are de-
signed.

5. Conclusion

We have shown that a novel theoretical model, a
single-scattering approximation based on scattering
of incoherent light from spheres, can at least quali-
tatively emulate the patterns of a backscattering
Mueller matrix in a turbid medium. With this
model it is possible to analyze and predict the change
in matrix patterns caused by glucose in human tis-
sues and in the nonscattering aqueous humor of the
eye. The single-scattering model is quantitatively
compared with a more-accurate Monte Carlo model.

Glucose molecules, which are chiral materials,
have the distinctive property of being able to rotate
the polarization plane of linearly polarized light. As
a result, the matrix patterns of turbid media with
glucose vary according to glucose concentration. We
have discussed the rotation of elements S;5 and Sy,
by using both Monte Carlo and single-scattering
methods. Agreement between the two methods was
satisfactorily achieved in the nondiffusion regime,
but the single-scattering model becomes inaccurate
in the diffusion regime. We predicted, using the
Monte Carlo model, that the rotation angles of the
Mueller-matrix elements are proportional to the con-
centration of glucose in turbid media, no matter
whether in the nondiffusion or the diffusion regime.
This study provides insights into ways in which
chiral molecules such as glucose affect the propaga-
tion of polarized light in turbid media.
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