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Optical sectioning by wide-field photobleaching imprinting microscopy
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We present a generic wide-field optical sectioning scheme, photobleaching imprinting microscopy

(PIM), for depth-resolved cross-sectional fluorescence imaging. Wide-field PIM works by

extracting a nonlinear component that depends on the excitation fluence as a result of

photobleaching-induced fluorescence decay. Since no specific fluorescent dyes or illumination

modules are required, wide-field PIM is easy to implement on a standard microscope. Moreover,

wide-field PIM is superior to deconvolution microscopy in removing background fluorescence,

yielding a six-fold improvement in image contrast. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4827535]

Three-dimensional fluorescence microscopy is an indis-

pensable tool in studying cell and tissue biology.1 However,

because of out-of-focus light, conventional wide-field fluo-

rescence microscopy generally does not have sectioning

capabilities. To achieve depth-resolved wide-field fluores-

cence imaging, two major strategies are commonly used.

One strategy, referred to as deconvolution microscopy (DM),

computationally determines how much out-of-focus light is

expected for the optics in use and then seeks to redistribute

this light to its points of origin in the sample.2 However, the

reduction of out-of-focus light by DM is effective only for

specimens in which the ratio of background fluorescence to

the in-focus signal is no greater than �20:1.3 Additionally,

the contrast improvement by DM is achieved at the expense

of a decreased signal-to-noise ratio and may also introduce

structural artifacts.4 The second strategy, referred to as struc-

tured illumination microscopy (SIM), projects a grid excita-

tion pattern onto the sample and captures three phase-shifted

fluorescence images.5,6 The sectioned image is then calcu-

lated by a demodulation algorithm.7 The drawback of SIM

lies in image artifacts that result from imprecise instrumenta-

tion and sample bleaching.8,9 Moreover, to adapt a standard

wide-field fluorescence microscope for SIM, an additional

illumination add-on module is required.

In this letter, we present a generic wide-field optical sec-

tioning scheme, photobleaching imprinting microscopy

(PIM). Compared to DM and SIM, wide-field PIM is easy to

implement—it does not require knowledge of the system’s

point-spread-function (PSF) or require an extra illumination

module. A depth-resolved image can be simply derived from

time-lapse imaging of photobleaching-induced fluorescent

decay. The operating principle of wide-field PIM is illus-

trated in Fig. 1. Upon one-photon excitation, the light inten-

sity measured by a wide-field microscope is the integration

of the fluorescence emitted over all depths

Iðx; yÞ ¼ C

ð
laðx; y; zÞFðx; y; zÞ � PSFzðx; yÞdz; (1)

where C is a constant, la is the absorption coefficient of the

fluorophore, F is the excitation fluence distribution, PSFz

is the point-spread-function at depth z, and the operator �
represents 2D convolution.

In fluorescence microscopy, photobleaching occurs

when the excited electrons are trapped in a relatively long-

lived triplet state. Compared with a singlet-singlet transition,

the forbidden triplet-singlet transition provides a fluorophore

with a much longer time to undergo irreversible chemical

reactions with the environment.10 The photobleaching of a

fluorophore obeys an exponential temporal decay law

laðtÞ ¼ la0 expð�ktÞ; (2)

where t is time, la0 is the initial absorption coefficient of the

fluorophore, and k is the photobleaching rate. The photo-

bleaching rate k is a function of excitation fluence F.11 For

one-photon excitation, this relation is described by

k ¼ BF: (3)

Here B denotes a constant. Since the fluence F is dependent

only on z under wide-field excitation, combining Eqs.

(1)–(3) gives

Iðx; y; tÞ ¼ C

ð
la0ðx; y; zÞexp½�BFðzÞt�FðzÞ � PSFzðx; yÞdz:

(4)

Equation (4) can be further Taylor expanded as

Iðx; y; tÞ ¼ C
XN

n¼0

tn ð�BÞn

n!

ð
la0ðx; y; zÞFnþ1ðzÞ � PSFzðx; yÞdz:

(5)

Polynomial fitting of Eq. (5) gives the coefficient associated

with tn

Inðx; yÞ ¼ D

ð
la0ðx; y; zÞFnþ1ðzÞ � PSFzðx; yÞdz; (6)

where D ¼ Cð�BÞn=n!. Since fluence distribution of a high

order approaches a delta function dðz� z0Þ, Eq. (6) becomes
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Inðx; y; n� 1Þ � D

ð
la0ðx; y; zÞdðz� z0Þ � PSFzðx; yÞdz

¼ Dla0ðx; y; z0Þ � PSFz0
ðx; yÞ; (7)

which describes an optically sectioned image at focal plane

z0.

To show optical sectioning in theory, we simulated a

case where a volume fluorescent sample was imaged by con-

ventional wide-field fluorescence microscopy and wide-field

PIM under one-photon excitation. The numerical simulation

was performed with Matlab (R2011a, MathWorks).

Randomly distributed point objects were generated inside a

3D cube. The excitation fluence was assumed to be uniform

along the lateral axes, and to have a Gaussian profile along

the depth axis in the form of

FðzÞ ¼ expð�ðz� z0Þ2=2r2
z Þ; (8)

where rz is correlated to the full width at half maximum

(FWHM) of FðzÞ by FWHM ¼ 2:35rz.

The detection PSF at depth z was considered to have a

2D Gaussian profile

PSFzðx; yÞ ¼ exp � x2 þ y2

2ð2þ jz� z0jÞ2

 !
: (9)

Here the size of the detection PSF reaches a minimum (opti-

cal diffraction limit) at the focus z ¼ z0.

Substituting Eqs. (8) and (9) for FðzÞ and PSFz into Eq.

(4) gives the theoretical photobleaching-induced fluorescent

decay IðtÞ measured by a wide-field detector. The polyno-

mial fitting of IðtÞ yields the PIM components In. As repre-

sentative images, the wide-field PIM images I0, I4, and I10

were calculated and are shown in Fig. 1(c). Owing to the

nonlinear fluence dependence, the image contrast increases

with the order n, implying a gradually decreased section

thickness.

Wide-field PIM experiments were carried out on a stand-

ard wide-field fluorescence microscope (FV1000, Olympus).

The sample was excited by a mercury lamp and imaged by a

100� oil-immersion objective with NA¼ 1.4 (PlanApo,

Olympus). The illumination aperture stop was maximized to

assure the NA of the microscope objective was fully utilized

for excitation. The excitation light and fluorescence emission

were separated by a GFP filter set (excitation, 470–495 nm;

emission, 510–550 nm; Olympus). Wide-field fluorescence

images were captured by a CCD camera (512� 512 pixels,

DV412-BV, Andor Technology) which was mounted on the

side imaging port of the microscope.

To measure the axial resolution of wide-field PIM, we

imaged a single layer of 200 nm diameter fluorescent beads

(T14792, Life Technologies). The sample was scanned along

the depth axis from the focus to an out-of-focus plane, with a

step size of 200 nm. At each depth, a total of 200 time-lapsed

frames (0.1 s frame integration time) was acquired. The PIM

components In associated with different orders of fluence

distribution were calculated at a bead’s location, and the

results are shown in Fig. 2. The FWHM of axial responses

I0 ð/ FÞ, I2ð/ F3Þ, I4ð/ F5Þ, and I8ð/ F9Þ are 1.25 lm,

0.43 lm, 0.30 lm, and 0.23 lm, respectively. By taking the

FIG. 1. The operating principle of

wide-field PIM. (a) A 3D fluorescent

sample is excited by a structured light

beam along the depth axis. The fluoro-

phores on the focal plane experience

much faster photobleaching than those

located out of focus. (b) The polyno-

mial fitting of a fluorescent decay

yields the PIM component In, which is

dependent on the nþ 1 order fluence

distribution. (c) Simulated wide-field

PIM images (I0; I4; and I10) for a

3D sample consisting of randomly dis-

tributed fluorescent beads. Here I0 rep-

resents the conventional wide-field

fluorescence image, and I4 and I10 rep-

resent optically sectioned images. The

volume sample has 100� 100� 100

(x, y, z) pixels. The lateral and axial

optical diffraction limits are 5 pixels

and 15 pixels, respectively. The scale

bar indicates a 20-pixel length.
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geometrical size of a fluorescent bead into consideration, the

axial resolutions associated withI0, I2, I4, and I8 approximate

1.15 lm, 0.33 lm, 0.20 lm, and 0.13 lm, respectively. As

expected, a higher order dependence on the excitation flu-

ence led to a higher axial resolution.

To demonstrate the optical sectioning capability of

wide-field PIM in biological tissue, we imaged a mouse kid-

ney section �16 lm thick. The glomeruli and convoluted

tubules were labeled with Alexa Fluor 488 (495 nm excita-

tion peak, 519 nm emission peak). First, a conventional

wide-field fluorescence image was captured. As shown in

Fig. 3(a), the fluorescent basal cell infoldings of the kidney

tubules were blurred in the image due to the out-of-focus

light. Then, after acquiring 80 time-lapse fluorescence

images (0.1 s frame integration time), the PIM image associ-

ated with I4, which is proportional to the fifth order of flu-

ence distribution, was derived and is shown in Fig. 3(b) The

background fluorescence has been substantially reduced due

to nonlinear fluence dependence, thereby resulting in a clear

in-focus image of the striation structure. It is worth noting

that here we used the PIM component I4 instead of a higher

order. A higher order PIM image can be extracted normally

at the expense of increasing the number of temporal sam-

plings and the extent of photobleaching. As indicated by Fig.

2, the gain in the axial resolution by using I8 (0.13 lm) com-

pared to using I4 (0.2 lm) is moderate. However, to extract

these coefficients from a time-lapse fluorescent decay, a total

of only 80 images were captured for deriving I4, compared

to 200 images required for deriving I8.

Since a competing technique, deconvolution micros-

copy, has also been used in background reduction in wide-

field fluorescence microscopy,2 here we compare it with

wide-field PIM in the context of image contrast. The wide-

field fluorescence image (Fig. 3(a)) was deconvolved with

the theoretically calculated PSF. The deconvolution was per-

formed along the depth axis, and the resulting images were

processed by the “no neighbors” method.12 The deconvolved

in-focus image is shown in Fig. 3(c). The intensity profiles

across the dashed line in Figs. 3(a)–3(c) are shown in Fig.

3(d), indicating an approximately six-fold improvement in

image contrast achieved by wide-field PIM over deconvolu-

tion image processing.

Furthermore, to acquire a 3D volume image, we scanned

the tissue sample along the depth axis with a step size of

2 lm. At each depth, a total of 80 time-lapse fluorescence

images (0.1 s frame acquisition time) was captured for PIM

calculation. The 3D images acquired by conventional wide-

field fluorescence microscopy and wide-field PIM are shown

in Figs. 4(a) and 4(b), respectively. Representative images

acquired at depths z ¼ 0, 4 lm, 8 lm, and 12 lm are shown

in Fig. 4(c). Due to crosstalk from adjacent depth layers, the

contrast in the 3D wide-field fluorescence image was low.

While in the 3D wide-field PIM image, owing to optical sec-

tioning along the depth axis, the striation structure became

FIG. 2. Measurement of axial responses associated with PIM components

I0ð/ FÞ, I2ð/ F3Þ, I4ð/ F5Þ, and I8ð/ F9Þ. Here F denotes the excitation

fluence.

FIG. 3. A comparison of (a) a conven-

tional wide-field image, (b) a wide-

field PIM image (I4 / F5), and (c) a

deconvoluted wide-field image of a

mouse kidney tissue section. In the

sample, the glomeruli and convoluted

tubules were labeled with Alexa Fluor

488. (d) Intensity profiles across the

dashed line in a–c. WF, wide-field flu-

orescence; DCV, deconvolution.
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more distinguishable. In addition, since wide-field PIM relies

on fluorescence decay to extract the nonlinear components,

we evaluated the gain in optical sectioning against the loss

of fluorescence intensity level after the PIM procedure. A

measurement showed that the tissue’s fluorescent intensity

was decreased by �15% due to photobleaching after acquir-

ing a depth layer.

In summary, we presented a generic wide-field optical

sectioning scheme, wide-field PIM, with a submicron axial

resolution. Compared to other depth-resolved wide-field

imaging techniques, wide-field PIM is easier to implement

on a standard fluorescence microscope and does not depend

on specific illumination modules. We showed that wide-field

PIM can significantly reduce the out-of-focus light in tissue

fluorescence imaging, thereby considerably improving the

image contrast. Furthermore, the volume imaging capability

of wide-field PIM was also demonstrated, revealing 3D

structures that were obscured by the background fluores-

cence under a wide-field acquisition.
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FIG. 4. Three-dimensional volume imag-

ing of a mouse kidney tissue section by

(a) conventional wide-field fluorescence

microscopy and (b) wide-field PIM (I4).

In the sample, the glomeruli and convo-

luted tubules were labeled with Alexa

Fluor 488. The sample was scanned

along the depth axis with a step size

of 2 lm. (c) Representative images

acquired at depth layers z ¼ 0; 4 lm;
8 lm; and 12 lm.
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