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Abstract: Many diseases involve either the formation of new blood vessels 
(e.g., tumor angiogenesis) or the damage of existing ones (e.g., diabetic 
retinopathy) at the microcirculation level. Optical-resolution photoacoustic 
microscopy (OR-PAM), capable of imaging microvessels in 3D in vivo 
down to individual capillaries using endogenous contrast, has the potential 
to reveal microvascular information critical to the diagnosis and staging of 
microcirculation-related diseases. In this study, we have developed a 
dedicated microvascular quantification (MQ) algorithm for OR-PAM to 
automatically quantify multiple microvascular morphological parameters in 
parallel, including the vessel diameter distribution, the microvessel density, 
the vascular tortuosity, and the fractal dimension. The algorithm has been 
tested on in vivo OR-PAM images of a healthy mouse, demonstrating high 
accuracy for microvascular segmentation and quantification. The developed 
MQ algorithm for OR-PAM may greatly facilitate quantitative imaging of 
tumor angiogenesis and many other microcirculation related diseases  
in vivo. 
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1. Introduction 

Photoacoustic tomography (PAT) is a rapidly developing biomedical imaging technology that 
can provide anatomic, functional, and molecular contrasts of intact biological tissue in vivo, at 
multiple scales from organelles to organs [1]. In PAT, a nanosecond pulsed laser is usually 
used to illuminate the biological tissue, which generates a localized transient thermoelastic 
expansion and thus leads to the emission of wideband ultrasonic waves (also termed as 
photoacoustic waves). The emitted photoacoustic waves are then detected to reconstruct the 
optical absorption properties of the biological tissue, which correlate with many important 
physiological parameters, including the total concentration, the oxygen saturation, and the 
oxygen metabolism of hemoglobin. Optical-resolution photoacoustic microscopy (OR-PAM) 
is a specific form of PAT that offers optical-diffraction limited transverse spatial resolution, 
which can be as fine as micrometers or even sub-micrometers [2–5]. OR-PAM uses a tightly 
focused laser beam for photoacoustic excitation and a focused single-element ultrasonic 
transducer to record depth-resolved 1D photoacoustic images (A-lines). By simultaneously 
scanning the laser beam and the ultrasonic transducer in 2D, volumetric (3D) OR-PAM 
images can be acquired. Using endogenous contrast from hemoglobin, OR-PAM can image 
microvascular morphology and functions in vivo at high resolution. As a result, it is becoming 
a powerful tool for studying the microcirculation in many physiological and pathological 

#200239 - $15.00 USD Received 28 Oct 2013; revised 1 Dec 2013; accepted 5 Dec 2013; published 15 Jan 2014
(C) 2014 OSA 27 January 2014 | Vol. 22,  No. 2 | DOI:10.1364/OE.22.001500 | OPTICS EXPRESS  1501



conditions [6]. For example, recently, OR-PAM has been applied to the longitudinal study of 
angiogenesis (the imaging of angiogenesis at a series of time points over a period of time—
days or weeks—to monitoring the evolution of angiogenesis) [7, 8], which plays a critical role 
in tumor growth, invasion, and metastasis [9, 10]. Such studies may open up new 
opportunities to better understand the dynamics of the tumor microenvironment, as well as to 
assess the efficacy of anti-angiogenic and/or combined tumor therapies in the early stages 
[11–13]. 

Four parameters—the vessel diameter distribution, the microvessel density, the vascular 
tortuosity, and the fractal dimension—have been widely accepted to describe and assess the 
vascular morphology. Quantitative imaging of these parameters in vivo at different time 
points can provide us insights into the dynamics of tumor angiogenesis [13–18]. In previous 
studies, we used a simple thresholding approach, together with cross-section vessel tracking, 
to segment the microvasculature in OR-PAM images [7, 8]. However, to offer truly accurate 
quantification for the intricate microvascular images acquired by OR-PAM, a more rigorous 
vascular segmentation and quantification algorithm is needed. Currently, conventional 
vascular analysis algorithms developed for medical imaging systems, such as X-ray digital 
subtraction angiography (DSA) and magnetic resonance angiography (MRA), generally lack 
the ability to accurately segment and quantify images of capillary-level microvessels, which 
are often falsely treated as noise with such algorithms [19, 20]. In addition, the unique multi-
scale feature of OR-PAM (imaging of vascular trees up to 6 – 7 orders with vessel diameters 
ranging from >200 µm to <10 µm) also presents challenges for these algorithms. 

In this study, we have developed a dedicated microvascular quantification (MQ) algorithm 
for OR-PAM to automatically quantify multiple microvascular parameters in parallel, 
including the vessel diameter distribution, the microvessel density, the vascular tortuosity, 
and the fractal dimension. The algorithm has been validated with in vivo OR-PAM images of 
a healthy mouse, demonstrating its ability to accurately segment and quantify the 
vasculature—including capillary-level microvessels—in OR-PAM images. The results shown 
in the current study suggest that the developed MQ algorithm may greatly facilitate the 
application of OR-PAM for quantitative imaging of tumor angiogenesis and many other 
microcirculation related diseases. 

2. Methods 

2.1 OR-PAM system and image acquisition 

The schematic of our OR-PAM system is illustrated in Fig. 1. For photoacoustic excitation, a 
pulsed laser beam (pulse width: 1.8 ns) at 532 nm from an Nd:YAG laser source (SPOT-532, 
Elforlight) was focused to an optical diffraction-limited spot to irradiate the sample. The 
generated photoacoustic waves were detected by a 75-MHz center frequency ultrasonic 
transducer via a custom-made optical-acoustic beam combiner. The output electrical signals 
from the ultrasonic transducer were amplified using a low-noise amplifier (ZFL-500LN-BNC, 
Mini-Circuits), digitized via a 200-MS/s data acquisition (DAQ) card (CS1422, GaGe), and 
then stored into a personal computer (PC). For 3D imaging, a 2D motorized translational 
stage was used to scan the OR-PAM imaging head (Fig. 1). Further details of the OR-PAM 
system can be found in our previous publication [21]. For in vivo imaging, an anesthetized 
female BALB/c mouse (around six-week old and weighing ~20 g) was used. OR-PAM 
images of both the mouse ear and back were acquired. In all in vivo experiments, the laser 
energy reaching the biological tissue was maintained to be ~100 nJ/pulse, corresponding to an 
optical fluence of ~19 mJ/cm2 on the tissue surface (when focused ~200 μm below the skin 
surface), which conforms to the 20 mJ/cm2 ANSI safety standards (the maximum permissible 
exposure). All experimental animal procedures were carried out in compliance with protocols 
approved by the Animal Studies Committee of the Shenzhen Institutes of Advanced 
Technology, the Chinese Academy of Sciences. 
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Fig. 1. Schematic of the OR-PAM system. AP, aperture; CL, convex lens; FC, fiber coupler; 
SMF, single-mode optical fiber; Obj, objective; UST, ultrasonic transducer; AL, acoustic lens; 
SO, silicone oil; EA, electrical amplifier; DAQ, data acquisition; PC, personal computer. 

2.2 Overall algorithm flow chart 

The overall flowchart of our microvascular quantification (MQ) algorithm is shown in Fig. 2. 
First, blood vessels are extracted (segmented) from the original image, based on a modified 
Hessian matrix method [19]. Then, the vascular centerlines corresponding to the extracted 
blood vessels are identified. Finally, using the segmented image and the identified centerlines, 
the vascular morphological parameters, namely, the vessel diameter distribution, the 
microvessel density, the vascular tortuosity, and the fractal dimension, are computed. All 
post-processing of the acquired images in this study were carried out using MATLAB 
(R2012b, Mathworks) on a PC with an Intel(R) CoreTM 2 Duo CPU E7500@2.93 GHz and a 
4-GB RAM. 

 

Fig. 2. Overall flow chart of the microvascular quantification algorithm. 
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2.3 Vessel extraction 

Step1, feature map calculation. First, before computing the Hessian matrix of the image, 
high-frequency emphasis (HFE) filtering was used to enhance the contrast of the microvessels 
in the image. The definition of the HFE filter is as follows: 

 ( , ),hfe hpH a bH u v= +  (1) 

where Hhp(u,v) is a high-pass operator (u and v represent the spatial frequency components in 
two dimensions), a is the offset from the origin, and b controls the contribution from high 
frequencies. 

Second, the Hessian matrix of image I(x,y) under scale s—which essentially extracts the 
local curvature of the structure—was computed as 
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where I(x,y,s) is defined as the convolution of I(x,y) and a smoothing Gaussian kernel 
G(x,y,s), with s controls the size of the kernel. 

Third, the eigenvalues of the Hessian matrix were computed, which represent the 
curvature along the principal directions corresponding to respective eigenvectors. Since blood 
vessels in OR-PAM images are shown as bright tubular structures, as discussed in [19], one 
of the eigenvalues represents the curvature along the direction of a vessel, which should be 
close to zero, while the other represents the curvature along the perpendicular direction of the 
vessel. Mathematically, the eigenvalues of the Hessian matrix representing blood vessels 
should satisfy the condition of 1λ ε≤  and 2 0λ <  (let 1 2λ λ< ), where ε  is a small fraction 

number. More comprehensive descriptions on the relationship between the Hessian matrix 
eigenvalues and the representation of various structures can be found in [19]. 

To further enhance the microvessels and suppress noise, we define the feature map f under 
scale s as: 
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Finally, the feature map of image I can be obtained as: 

 
min max

= max ( ) ,
s s s

f f s
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where smin = 1 and smax = 11 were used in this study, as determined by the vessel diameter 
distribution. 

Step2, feature map enhancement by fractional differential. Although most blood vessels 
can be revealed in the feature map after step 1, capillary regions may still be dim, suggesting 
that the texture of the feature map needs to be further enhanced. Thus, a fractional differential 
operator was employed to modulate the horizontal and vertical gradient fields of the feature 
map, as it could be adjusted appropriately to boost the high-frequency components while 
retaining the key low-frequency components. Then, using the enhanced gradient fields, a new 
feature map f’ was obtained through gradient domain reconstruction [22]. 

Step3, intensity transformation. To further improve the contrast between the blood vessels 
and the background, an intensity transformation function was applied to the enhanced feature 
map f’. The transformed image g is given by: 
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where m is an adjustable parameter representing the critical intensity (gray-scale value) of the 
image and γ  is an adjustable scaling factor. When the intensity of a pixel is below m, the 

pixel will be regarded as background and suppressed. In our experiments, the optimal values 
of m were obtained automatically by performing the clustering-based image thresholding, 
while γ  was set empirically to be 19~21. 

Step4, region growing. The pixels with the maximum intensity value (which equals to 1) 
in the ultimately enhanced images were selected as the seed points for region growing, 
through which the blood vessels were extracted as binary images. 

To better illustrate the image processing steps described above, two 2D OR-PAM image 
slices were selected to show the intermediate results after each major step (Fig. 3). The 
feature maps of the original images are shown in Figs. 3(a) and 3(d), while the fractional-
differential enhanced feature maps are given in Figs. 3(b) and 3(e). Finally, the segmented 
blood vessel images based on region growing are shown in Figs. 3(c) and 3(f). 

 

Fig. 3. Image illustration of the major steps for vessel extraction. (A) and (B), The original 2D 
OR-PAM image slices; (a) and (d) The Hessian matrix feature maps; (b) and (e) The 
fractional-differential enhanced feature maps; (c) and (f) The final images with extracted blood 
vessels. 

2.4 Vascular centerlines 

Based on the extracted binary blood vessel images, an augmented fast marching method 
(AFMM) was employed and adapted to obtain the centerlines of the blood vessels [23]. 
Briefly, a 3D AFMM method was used to solve the equation describing the evolution of a 
closed contour surface as a function of time, with a specific speed function in the normal 
direction at each point on the surface. Specifically, in this study, the centerlines were 
determined using a two-step AFMM approach. The flowchart of the method is given in Fig. 4, 
while its major implementation steps are described in detail below. 

• Step 1: Separate the vascular networks into individual sub-images, so that each of which 
includes only one set of interconnected vascular tree; initialize the speed of points 
inside and outside the vessels as constants 1 and 0, respectively 
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• Step 2 (First-step AFMM): For one sub-image, the points inside the vessels are used as 
seeds to expand uniformly at the initial speed, until their contour surfaces reach the 
closest boundary of the vessel; calculate the distance distribution from every point 
inside the vessel to its corresponding closest vessel boundary 

• Step 3: Find the point with the largest distance as the “global maximum distance point” 
(usually the center point of a major intersection in a vascular tree); set the distance 
value of each vessel point as the updated speed of this point for Step 4 

• Step 4 (Second-step AFMM): Start the expansion from the global maximum distance 
point and stops when the expanding contour surfaces reach the entire vessel 
boundary; similarly, calculate another distance distribution from all vessel points to 
the global maximum distance point, termed as the flight time map 

• Step 5: Set the point of the maximum flight time as the furthest point; calculate the 
gradient of the flight time map 

• Step 6: To extract the centerline of a branch in the vascular tree, set the furthest point as 
the starting point and then connect along the points in the opposite direction of the 
fastest gradient descent of the flight time map, termed as the back-tracking method 

• Step 7: Repeat Step 6 to extract the centerlines of all branches in one vascular tree to 
form the skeleton of this vascular tree 

• Step 8: Iterate Step 1 to Step 7 until the centerlines of all vascular trees (in all sub-
images) are extracted to form the vessel network 

 

Fig. 4. Flow chart of the two-step augmented fast marching method (AFMM) for centerline 
extraction. 
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To illustrate the concept of vascular centerlines more intuitively, Fig. 5 shows a composite 
image consisting of a segmented 3D OR-PAM vascular image overlaid with the extracted 
vascular centerlines computed using the algorithm described above. From Fig. 5, it can also 
be seen that, in general, the computed centerlines are accurately positioned within the vessels. 

 

Fig. 5. Computed vascular centerlines overlaid with a segmented volumetric OR-PAM image. 

2.5 Vessel diameters 

As the tangential direction at each point on the centerline is perpendicular to the cross-section 
of the vessel, the diameter of the vessel at a specified point can be calculated as the distance 
between the two intersection points between the vessel edges (determined in 2.3) and the 
cross-section line. 

2.6 Microvessel density 

In this study, the microvessel density (MVD) is defined as the length of the vessel per unit 
volume, as given below [24]: 

 MVD .
Total Vessel Length

ObservedVolume
=   

 (6) 

That’s because, in a given volume, a greater vessel length normally corresponds to the fact of 
more densely packed microvessels, and thus corresponds to a greater microvessel density. 

2.7 Tortuosity 

For 3D vasculature, there are three widely accepted definitions for tortuosity, namely, the 
distance metric (DM), the inflection count metric (ICM), and the sum of angles metric 
(SOAM) [18, 25, 26]. In short, DM is defined as the ratio between the actual path length of a 
vessel and the linear distance between the end points of this vessel; ICM is defined as the 
production between the number of a curve’s inflection points and the DM of this curve; 
SOAM is defined as the sum of the total curvature along a curve normalized by the curve’s 
path length. In this study, the vascular tortuosity was computed in all three definitions. 

2.8 Fractal dimension 

The fractal dimension can also be calculated in different methods, including the Hausdorff 
dimension, the box-counting dimension (or box dimension), and the sand box dimension, 
among which the box dimension is the most commonly used definition and also the one used 
in this study [14, 27]. 
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To calculate the box dimension, grids with a size of r × r × r were first used to cover the 
extracted vascular image; then, the minimum number of grids occupied by the blood vessels 
was counted (denoted by N). Upon gradually reducing r (size of the grids), N will increase 
accordingly. The fractal dimension D was calculated according to Eq. (7) below [28]: 

 
10

log ( )
lim

log( )r

N r
D

r−→
=  (7) 

3. Results 

First, we compared the vessel extraction results using our algorithm with those from 
algorithms developed for conventional medical imaging systems. Because one algorithm (the 
level set method) was quite time-consuming, only a 2D OR-PAM image slice (acquired from 
a mouse ear in vivo) consisting of 1600 × 1200 pixels was selected for this comparison. From 
Fig. 6, it can be seen that, compared with the traditional Hessian matrix algorithms developed 
for DSA or MRA (Figs. 6(b) and 6(c)), our algorithm has produced better results for 
microvessel extraction (Fig. 6(d)), including: (1) better extraction of microvessels in the 
capillary beds regions; (2) better continuity for the extracted microvessels; (3) better intensity 
uniformity and continuity in individual vessels. 

 

Fig. 6. Comparison of the vessel extraction results using different algorithms. (a) The original 
2D OR-PAM image slice; (b) Image with vessels extracted using a level set based algorithm 
[20]; (c) Image with vessels extracted using a traditional Hessian matrix algorithm developed 
for DSA and MRA [19]; (d) Image with vessels extracted using our modified Hessian matrix 
algorithm dedicated to OR-PAM. 

Further, areas 1 and 2 in the dashed boxes in Fig. 6(a) were enlarged (Figs. 7(a) and 7(h)) 
for further analysis and validation. The processed images of these sub-areas using the level 
set method (Figs. 7(b) and 7(i)), the traditional Hessian matrix method (Figs. 7(c) and 7(j)), 
and our method (Figs. 7(d) and 7(k)) were compared side by side. In Fig. 7, from the 
comparison of the two representative cross-section intensity profiles, it can be clearly seen 
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that, using our method, the majority of the blood vessels from the original images are 
successfully extracted, and the continuity and intensity uniformity of the extracted vessels are 
in general superior to the other two methods. 

 

Fig. 7. Comparison of representative cross-section intensity profiles between the original and 
segmented images. (a) and (h), The original 2D OR-PAM sub-images (corresponding to the 
dash boxes 1 and 2 in Fig. 6); (b) and (i), The segmented images of (a) and (h) using the level 
set method; (c) and (j), The segmented images of (a) and (h) using the traditional Hessian 
matrix method developed for DSA and MRA; (d) and (k), The segmented images of (a) and (h) 
using our method dedicated to OR-PAM; (e) – (g) and (l) – (n), Blue lines: normalized 
intensity profiles corresponding to the yellow dash lines in the original images, red lines: 
extracted vessels corresponding to the yellow dash lines in the segmented images. 

Further, our vessel extraction algorithm was validated using a volumetric OR-PAM image 
(consisting of 1600 × 1600 × 18 pixels) of a mouse ear in vivo. Figure 8(a) is the original 
volumetric photoacoustic image with depth encoded in color; Figs. 8(b) and 8(c) are the 
images with vessels extracted using the simple thresholding algorithm in our previous work 
[8] and the algorithm developed in this study, respectively. 
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Fig. 8. Vessel extraction in a volumetric OR-PAM image of a mouse ear in vivo. (a) The 
original volumetric OR-PAM image with depth encoded in color; (b) OR-PAM image with 
vessels extracted using the algorithm in [8]; (c) OR-PAM image with vessels extracted using 
our MQ algorithm. The color scale represents depth along z axis below the skin surface of the 
mouse. 

Finally, to validate the consistency of the performance of our algorithm, the vasculature in 
three in vivo OR-PAM images acquired at different regions of an anesthetized mouse were 
segmented and quantified. Figure 9(a) shows an OR-PAM image acquired from the root 
region of a mouse ear, which is characterized by relatively large vessels with nicely ordered 
vascular trees. Figure 9(b) shows an OR-PAM image acquired from a capillary bed region of 
the same mouse ear. This region, while still shows multiple orders of vascular branches, is 
essentially dominated by densely packed microvessels. Figure 9(c) shows an OR-PAM image 
acquired from the superficial dorsal region of the same mouse. The image of this region is 

 

Fig. 9. Quantification of microvascular parameters with OR-PAM. (a) and (b) In vivo OR-
PAM images of two different regions of a mouse ear; (c) In vivo OR-PAM image of the dorsal 
region of the same mouse; (d) The vessel diameter distribution; (E) Computed microvessel 
density (MVD), fractal dimension (FD), and vascular tortuosity—in three different metrics 
including the distance metric (DM), the inflection count metric (ICM), and the sum of angles 
metric (SOAM). The color scale represents depth along z axis below the skin surface of the 
mouse. 

#200239 - $15.00 USD Received 28 Oct 2013; revised 1 Dec 2013; accepted 5 Dec 2013; published 15 Jan 2014
(C) 2014 OSA 27 January 2014 | Vol. 22,  No. 2 | DOI:10.1364/OE.22.001500 | OPTICS EXPRESS  1510



characterized by relatively uniform vascular distribution. The calculated vessel diameter 
distribution using our MQ algorithm is shown in Fig. 9(d), while other parameters are given 
in Fig. 9(e). It can be seen that, the computed parameters agree well with some visually 
observed characteristics, for example, Fig. 9(b) has a significantly higher microvessel density 
due to the densely packed microvessels; meanwhile, they also reveal some information that 
cannot be easily captured by direct visual observations, for example, Fig. 9(a) has a relatively 
large tortuosity in all three definitions (DM, ICM, and SOAM). Note that the images in Fig. 9 
were acquired by adjusting the focusing depth of the OR-PAM imaging head, in order to 
image across an extended depth of the various regions of the back of a mouse. 

4. Conclusions and discussion 

In this study, we developed a Hessian matrix based microvascular quantification algorithm 
dedicated for optical-resolution photoacoustic microscopy (OR-PAM). The Hessian matrix 
feature map and subsequent image processing steps were specifically constructed or designed 
to cater the need for segmenting the intricate microvasculature imaged with OR-PAM. To 
provide a foundation for computing the vascular morphological parameters, we developed a 
two-step augmented fast marching method to obtain the vascular centerlines. Using the 
segmented images and calculated centerlines, four vascular morphological parameters, 
including the vessel diameter distribution, the microvessel density, the vascular tortuosity, 
and the fractal dimension, were computed. The developed microvascular quantification (MQ) 
algorithm has demonstrated great consistency and reliability when tested on multiple in vivo 
volumetric OR-PAM images acquired from a healthy mouse. The results in this study suggest 
that, the developed MQ algorithm, in conjunction with OR-PAM or other microvascular 
imaging technologies such as Doppler OCT, can potentially facilitate the quantitative imaging 
and study of tumor angiogenesis and many other microcirculation related diseases in vivo. 
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