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Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have
opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field
microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes
introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable
labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of
biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nano-
scopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position,
multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or
nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order
dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA
nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. © The
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1 Introduction
Optical microscopy allows three-dimensional (3-D) imaging of
living cells, tissues, and organisms. However, due to optical dif-
fraction, conventional far-field microscopy is limited to imaging
features no smaller than 200 to 300 nm laterally and 500 to
700 nm axially.1 Over the last decade, several super-resolution
microscopy techniques have been developed to overcome the
diffraction limit.2–7 Some of the techniques utilize nonlinear
effects to narrow the point spread function (PSF);3–5 others
use stochastic activation and averaging to localize individual
fluorescent molecules.6,7 These fluorescence-based nanoscopy
methods have improved both lateral and axial resolution by an
order of magnitude over conventional microscopy. However,
fluorescence tagging requires additional staining steps and, at
times, can introduce image artifacts.1 Therefore, label-free
imaging has been a major research impetus. Recently, auto-
fluorescence-based nanoscopy of fluorophores,8 phase-based
nanoscopy of specimens featuring precipitous refractive index
changes,9 and photothermal microscopy of gold nanoparticles
have been demonstrated.10 However, label-free nanoscopy of
biological structures with chromophores having no or low fluo-
rescence quantum yields—such as hemoglobin, cytochromes,
melanin, DNA, and RNA—remains elusive.

Photoacoustic microscopy (PAM) is an effective in vivo func-
tional and molecular imaging tool based on optical absorption
contrast.11,12 In the PA phenomenon, light is absorbed by mol-
ecules and converted to heat. The subsequent thermoelastic
expansion generates an acoustic wave.11,13 In conventional
PAM, the PA signal is generated following excitation by a single

laser pulse per pixel, and the amplitude of the PA signal is
assumed to be proportional to the excitation pulse energy. As
light intensity increases, however, mechanisms such as thermal
nonlinearity,14 optical saturation,15 or multiphoton absorption16

engender a significant nonlinear dependence on the excitation
pulse energy. PA nonlinearity has recently been used in several
applications, such as quantifying picosecond absorption relax-
ation times with a nanosecond laser15 and measuring oxygen
saturation in vivo.17 Previously, we combined photoacoustics
with the intensity-dependent photobleaching effect to demon-
strate subdiffraction imaging of red blood cells and melanoma.18

Based on photobleaching of the absorbing molecules, this tech-
nique is destructive but tolerable.19 Here, we use nondestructive,
nonlinear photoacoustics to achieve PA nanoscopy of biological
structures having undetectable fluorescence, which adds a new
contrast mechanism to the realm of nanoscopy.

2 Methods and Materials

2.1 Principles of PA Nanoscopy

Nonlinear PA effects arise from two major sources: nonlinear
thermal expansion and optical absorption saturation. First, the
thermal expansion coefficient βðTÞ depends on the temperature
rise T above the equilibrium temperature.20,21 In thermal con-
finement, T is proportional to the optical energy deposition.
When T is small, βðTÞ ≈ β1 þ β2T, where β1 and β2 are the
first two coefficients in the Taylor expansion around the equi-
librium temperature.20 In water and soft tissues at room temper-
ature,21 β2 ≈ 0.04β1, and, therefore, a temperature rise of 3 K
can change the thermal expansion coefficient by >10%.

In our system, the laser pulse duration (∼1.6 ns) is much
shorter than the transducer response time (several tens of*Address all correspondence to: Lihong V. Wang, E-mail: lhwang@wustl.edu
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nanoseconds), and, therefore, PA excitation is in stress confine-
ment within the acoustically defined resolution. In stress con-
finement, the initial pressure rise, p0, centered at ~r0 laterally
and at z0 axially, within the acoustic voxel, V, is given by

p0ð~r0; z0Þ ¼
1

V0

Z
V

pð~r − ~r0; z − z0Þ · d~r dz; (1)

where V0 is the volume of the acoustic voxel, and pð~r − ~r0;
z − z0Þ is the laser-induced pressure at each point within the
acoustic voxel given by20

pð~r − ~r0; z − z0Þ ¼
1

κ
fβ1Tð~r − ~r0; z − z0Þ

þ 1

2
β2½Tð~r − ~r0; z − z0Þ�2g: (2)

Here, κ is the isothermal compressibility.
The diameter of the optical excitation area (226 nm) is large

compared to the thermal diffusion length (15 nm in water for
a 1.6-ns laser pulse), and, therefore, the PA excitation is also
in thermal confinement within the optically defined lateral
resolution. In thermal confinement, the local temperature rise,
Tð~r − ~r0; z − z0Þ, is given by22

Tð~r − ~r0; z − z0Þ ¼ ηthAeð~r − ~r0; z − z0Þ∕ðρCpÞ; (3)

where ηth is the percentage of deposited optical energy that is
converted into heat, Ae denotes the optical energy deposition
(J∕m3), ρ denotes the mass density, and Cp denotes the specific
heat capacity at constant pressure.

The second source of nonlinear PA effects is saturation of
optical absorption. The energy deposition due to single photon
absorption is

Aeð~r − ~r0; z − z0Þ ¼
Z∞
−∞

μað~r − ~r0; z − z0; tÞ

× Ið~r − ~r0; z − z0; tÞdt; (4)

where μað~r − ~r0; z − z0; tÞ is the optical absorption coefficient
(m−1) at time t, and Ið~r − ~r0; z − z0; tÞ is the optical intensity
(W∕m2). The optical absorption coefficient commonly saturates
with increasing intensity in the form23

μað~r − ~r0; z − z0; tÞ ¼
μa0ð~r; zÞ

1þ Îð~r − ~r0; z − z0; tÞ
; (5)

where μa0ð~r; zÞ is the unsaturated optical absorption coefficient,
Îð~r − ~r0; z − z0; tÞ ¼ Ið~r − ~r0; z − z0; tÞ∕Isat, and Isat is the sat-
uration intensity.

The optical intensity is presumed to have the following gen-
eral form:

Ið~r − ~r0; z − z0; tÞ ¼ Epf̂sð~r − ~r0; z − z0Þf̂tðtÞ: (6)

Here, Ep is the pulse energy, which was varied for each voxel
in PA nanoscopy. f̂sð~r − ~r0; z − z0Þ is the normalized spatial
function. For a Gaussian beam,

f̂sð~r − ~r0; z − z0Þ ¼
1

π½wðz − z0Þ�2
exp

�
−

2ð~r − ~r0Þ2
½wðz − z0Þ�2

�
;

(7)

where wðzÞ is the beam width given by

wðz − z0Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z − z0
zR

�
2

s
: (8)

Here, w0 is the waist radius and zR ¼ πw2
0∕λ is the Rayleigh

length. f̂tðtÞ is the normalized temporal function. For a Gaussian
pulse,

f̂tðtÞ ¼
1ffiffiffiffiffi
2π

p
τL

exp

�
−

t2

2τ2L

�
; (9)

where τL is a parameter related to the full width at half maxi-
mum (FWHM) of the pulse [FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þp

τL], which
was constant in our experiments.

Following Beer’s law, in the presence of optical absorption/
scattering, the optical intensity also includes attenuation with
depth z. However, when the thickness of the sample (e.g., 3 to
10 μm) is much smaller than the characteristic penetration depth
(e.g., for hemoglobin in red blood cells, 1∕μa0 ≅ 44 μm at
532 nm, and the scattering effect is negligible), the Born
approximation is valid, i.e., the Beer’s law attenuation term is
negligible.

Substitution of Eq. (5) into Eq. (4) yields

Aeð~r − ~r0; z − z0Þ

¼ μa0ð~r; zÞIsat
Z∞
−∞

Îð~r − ~r0; z − z0; tÞ
1þ dÎð~r − ~r0; z − z0; tÞ

dt: (10)

Because Î was less than unity in our experiments, we can
expand the integrand to the n’th order as follows:

Aeð~r − ~r0; z − z0Þ ≈ μa0ð~r; zÞIsat
Z∞
−∞

½Î − Î2 þ Î3: : :

þ ð−1Þn−1 · În�dt: (11)

For a Gaussian pulse, Eq. (11) becomes

Aeð~r − ~r0; z − z0Þ ≈ μa0ð~r; zÞFsat

� ffiffiffi
1

1

r
F̂ −

ffiffiffi
1

2

r
F̂2

þ
ffiffiffi
1

3

r
F̂3: : : þ ð−1Þn−1

ffiffiffi
1

n

r
F̂n

�
; (12)

where Fsat ¼
ffiffiffiffiffi
2π

p
τLIsat, and F̂ is the fluence normalized by Fsat,

F̂ ¼ ðEp∕FsatÞf̂sð~r − ~r0; z − z0Þ. Substitution of Eqs. (12), (3),
and (2) into Eq. (1) yields

p0ð~r0; z0; EpÞ ¼
X∞
n¼1

cnð~r0; z0Þ · ðEpÞn; (13)

where

Journal of Biomedical Optics 086006-2 August 2014 • Vol. 19(8)

Danielli et al.: Label-free photoacoustic nanoscopy

Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 08/12/2014 Terms of Use: http://spiedl.org/terms



cnð~r0; z0Þ ¼
1

V0

Z
V

�
ð−1Þn−1Γ1ðnÞηthFsatμ

0
nð~r; zÞ

×
�
f̂sð~r − ~r0; z − z0Þ

Fsat

��
d~r dz: (14)

Here,

μ 0
nð~r; zÞ ¼ μa0ð~r; zÞ

�
1 −

γ2ðnÞηthFsatμa0ð~r; zÞ
Γ1ðnÞ

�
;

Γ1ðnÞ ¼ β1∕
�
κρCp

ffiffiffi
n

p 	
n ≥ 1;

γ2ðnÞ ¼
(
0 n ¼ 1

β2∕½2κðρCpÞ2� ·
hP

n−1
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
1

mðn−mÞ
q i

n > 1
:

(15)

The image constructed from each coefficient, cnð~r0; z0Þ, in
Eq. (14) is a convolution between ½f̂sð~r − ~r0; z − z0Þ�n and a
modified absorption distribution term, μ 0

nð~r; zÞ, which can be
considered a compound contrast mechanism for PA nanoscopy.
In the linear regime, the first coefficient, c1ð~r0; z0Þ, is a convo-
lution between f̂sð~r − ~r0; z − z0Þ and μa0ð~r; zÞ. The correspond-
ing lateral PSF for c1ð~r0; zoÞ has an optical diffraction-limited
width of 0.51 · λ∕NA, where λ is the optical wavelength and NA
is the numerical aperture of the optical objective lens. Higher-
order coefficients contain higher powers of fluence distribution,
thus effectively narrowing the lateral PSF and enabling imaging
with spatial resolution finer than the diffraction limit. The inter-
play between Γ1ðnÞ and γ2ðnÞ improves the resolution of the
high-order coefficients cn in Eq. (14). When either Γ1ðnÞ or
γ2ðnÞ dominates, cn follows f̂

n
s , improving the lateral resolution

by a factor of
ffiffiffi
n

p
over that of c1 (i.e., linear PAM). However,

when Γ1ðnÞ ≅ 0.5 · γ2ðnÞηthFsatμ
max
a0 , the resolution is further

improved.
To extract the coefficients, cnð~r0; z0Þ, of the PA signal up

to the N’th order, a train of M ≥ N pulses with different pulse
energies incident at the same position can be used. A linear
least-squares estimation gives264 c1

..

.

cN

375 ¼ ðVTVÞ−1VT ×

264 p1

..

.

pM

375: (16)

Here, pj is the PA signal generated by the j’th pulse
(j ¼ 1: : :M), centered at position ~r0 laterally and at z0 axially,
and V is a Vandermonde matrix whose elements are powers of
the pulse energies.

V ¼

26664
Ep1

E2
p1

Ep2
E2
p2

· · · EN
p1

· · · EN
p2

..

. ..
.

EpM
E2
pM

. .
. ..

.

· · · EN
pM

37775: (17)

2.2 Optical Sectioning of PA Nanoscopy

To evaluate the optical sectioning capability of PA nanoscopy,
we consider a slab-shaped compound absorption coefficient,
μ 0
nð~r; zÞ, with an infinitesimally thin thickness, i.e., μ 0

nð~r; zÞ ∝

δðz − z 0Þ. By taking the integration in Eq. (14) for this sample,
the coefficients can be presented as a function of z0.

cnðz0Þ ∝
1

½wðz0 − z 0Þ�2ðn−1Þ : (18)

Normalization to the peak value at z0 ¼ z 0, the slab’s true
location, gives

cnðz0Þ
cnðz0 ¼ z 0Þ ¼

�
1þ

�
z0 − z 0

zR

�
2
�
−ðn−1Þ

: (19)

In the linear regime, c1ðz0Þ is constant with z0, and, there-
fore, there is no optical sectioning. However, for higher orders,
cnðz0Þ narrows around z0 ¼ z 0. The expected optical sectioning
capability of the n’th coefficient, Δzn, can be quantified as the
FWHM of cnðz0Þ.

Δzn ¼ 2zR ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
n−1
p

− 1

q
: (20)

For example, the expected optical sectioning capabilities are
2.0zR, 1.3zR, and 1.0zR for c2, c3, and c4, respectively.

2.3 Experimental Setup of PA Nanoscopy

In the scheme depicted in Fig. 1(a), an Nd:YVO4 laser (Spot
10-200-532, Elforlight, Daventry, United Kingdom) generates
a train of 1.6-ns pulses at 532 nm with a 2.35 kHz pulse
repetition rate. To allow per-pulse energy variation, the laser
beam is passed through an electro-optic modulator (350-50,
Conoptics, Danbury, Connecticut), which is controlled by
LabVIEW (National Instruments, Austin, Texas) and
synchronized with the laser trigger. The beam is then spatially
filtered, partially sampled by a photodiode (S1226–18BK,
Hamamatsu, Bridgewater, New Jersey), and focused onto the
sample using an infinity corrected objective (NA 1.20, 60×,
UPlanSApo, Olympus, Center Valley, Pennsylvania). The
focus is precisely adjusted using a piezoelectric actuator
(PAS080, Thorlabs, Newton, New Jersey). The laser pulse
energy at the target ranges from 0.5 to 5 nJ for imaging
melanoma cells, 20 to 100 nJ for imaging mitochondria, and
0.01 to 0.25 nJ for imaging gold nanoparticles. A train of
four pulses with varied pulse energies is fired for each pixel.
The photodiode is used to accurately measure the energy of
each pulse for pulse-to-pulse signal calibration. The PA signal
is detected by an ultrasonic transducer (40 MHz central fre-
quency and NA 0.5). After amplification, the PA signal is
digitized at a sampling rate of 500 MHz using a data acquisition
card (ATS9350, Alazartech, Pointe-Claire, Quebec, Canada). A
piezoelectric scanning stage (NPXY400A, nPoint, Middleton,
Wisconsin) raster scans the objective lens and the ultrasonic
transducer with a step size of 25 nm in the xy-plane.
Coefficients cnð~r0; z0Þ are extracted by fitting the PA depend-
ence on pulse energy with a polynomial. Both conventional
PAM and PA nanoscopy images were processed the same way
by passing the raw data (for conventional PAM) or the high-
order coefficient images (for PA nanoscopy) through a 3 × 3

low-pass Wiener filter to remove high-frequency noise. In the
current embodiment of PA nanoscopy, the acquisition time for
an image with 256 × 256 pixels is ∼112 s.
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2.4 Culture of Melanoma Cells and Fibroblasts

Genetically modified mouse embryonic fibroblasts (MEFs),
NIH-3T3 cells, and B16 melanoma cells were obtained from
American Type Culture Collection (Manassas, Virginia) and
maintained in Dulbecco’s modified Eagle medium (Invitrogen,
Carlsbad, California) supplemented with 10% fetal bovine
serum (Invitrogen) and 1% penicillin-streptomycin (P/S,
Invitrogen) at 37°C and 5% CO2. The cells were seeded onto
a cover glass at a density of ∼1 × 104 cells∕cm2 and grown
overnight. The cells were then fixed in 4% formaldehyde and
washed with phosphate buffered saline three times. For confocal
imaging, MEF cells were stained with 200 nM Mitotracker-red
for 10 min before fixation.

2.5 Cover Glass Photolithography

Glass coverslips (24 mm × 40 mm, Corning, Lowell,
Massachusetts) were deposited with micron-sized chromium
patterns that served as landmarks for imaging gold nanopar-
ticles. First, each glass coverslip was cleaned with acetone

and washed thoroughly with distilled water. Second, a
1.5-μm-thick layer of photoresist (AZ5314) was spin-coated
onto the substrate, followed by prebaking at 80°C for 1 min.
Third, a negative photomask was placed upon the photoresist
and both were exposed to 0.08 J∕cm2 ultraviolet light for
10 s. After the photomask was removed, the photoresist was
reverse-baked at 90°C for 2 min and re-exposed to
0.08 J∕cm2 ultraviolet light for 30 s. The coverslip was then
developed for 30 s by a metal-ion-free photoresist developer
(AZ327). Fourth, using a thermal evaporator, a 50-nm-thick
chromium layer was deposited on the photoresist patterns.
Finally, the photoresist, together with the metal on top of it, was
removed in acetone, leaving chromium patterns on the glass
substrate.

2.6 Fabrication and Characterization of a Colloidal
Gold Monolayer on Glass

Glass coverslips (24 mm × 40 mm, Corning) with micron-sized
chromium patterns were used as substrates for assembly of
the colloidal gold monolayer. The glass substrates were cleaned
by sonication for 5 min in hot RBS 35 detergent (Thermo
Scientific, Waltham, Massachusetts) and washed extensively
with distilled water. The cleaned glass substrates were subjected
to plasma oxidation for 30 min and then immersed in a 10%
(v/v) solution of (3-Aminopropyl)triethoxysilane (Sigma-
Aldrich, Saint Louis, Missouri) in anhydrous ethanol for
20 min, rinsed five times in anhydrous ethanol with sonication
for 3 min each time, and dried at 120°C for 3 h. To attach
the gold nanoparticles, ∼250 μl of colloidal gold solution
(∼2 × 108 particles∕ml) was left overnight on one side of the
silanized glass coverslip in a 45°C oven. The glass coverslips
were then washed in distilled water on a shaker for 3 h and
dried in a 60°C oven for 1 h. The immobilized colloids were
imaged by atomic force microscopy (AFM) in the tapping mode
in air, using standard silicon cantilevers (Nano World, Neuchâtel,
Switzerland) on a Veeco Nanoman scanning probe microscope
(Veeco Instruments, Plainview, New York).

3 Results

3.1 Characteristics of PA Nanoscopy

To illustrate the concept of PA nanoscopy using our actual
experimental conditions (e.g., a 1.2 NA objective), we simulated
c1 and c3 by assuming Γ1ðn ¼ 3Þ ¼ 0.5 · γ2ðn ¼ 3ÞηthFsatμ

max
a0 .

The lateral PSF for c1 has an optical diffraction-limited width of
0.51 · λ∕NA, where λ is the optical wavelength (532 nm in our
setup) and NA is the numerical aperture of the optical objective
lens. Hence, we considered a Gaussian illumination beam of
226 nm FWHM and two absorbers with absorption coefficients
following Gaussian distributions (each with a 5 nm FWHM
diameter) located 90 nm apart [Fig. 1(b)]. While the image
with diffraction-limited resolution from the linear PA coeffi-
cient, c1, exhibited a single blurred peak [Fig. 1(c)], the
image with super-resolution from c3 [Fig. 1(d)] clearly resolved
the two particles. Figure 1(e) shows the contrast (i.e., the depth
of the dip divided by the peak signal)—as a function of the dis-
tance between the two particles—from c1 for linear PAM, from
f̂3s (i.e., c3) for PA nanoscopy when Γ1ðn ¼ 3Þ or γ2ðn ¼ 3Þ
dominates, and from c3 when Γ1ðn ¼ 3Þ ¼ 0.5 · γ2ðn ¼ 3Þ
ηthFsatμ

max
a0 .

Fig. 1 Principle of photoacoustic (PA) nanoscopy. (a) Schematic of
the PA nanoscope. At each scanning position, a train of pulses
with increasing energy successively excites PA signals. Due to
optical saturation or nonlinear thermal expansion, the PA amplitude
increases nonlinearly with the increasing incident energy.
(b) Fluence distribution of a Gaussian illumination beam of 226 nm
full width at half maximum, which is scanned over two absorbers
90 nm apart. (c) Image from the normalized linear PA coefficient,
c1, of the two absorbers. Proportional to μa0 ⊗ f̂ s , c1 is diffraction
limited. (d) Image from normalized c3, which resolves the two
particles. (e) Contrast as a function of the separation between
the two particles for c1, f̂ 3s , and c3 when Γ1ðn ¼ 3Þ ¼
0.5 · γ2ðn ¼ 3ÞηthF satμ

max
a0 . The spatial resolutions as defined by

the particle separations at 10% contrast (horizontal dashed line)
are ∼234, ∼135, and ∼90 nm, respectively.
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3.2 Resolution Validation Using Gold Nanoparticles
of 100 nm Diameter

To verify the ability of PA nanoscopy to resolve nanoscopic fea-
tures, we imaged 100-nm-diameter gold nanoparticles fixed on a
glass coverslip. The particles were first imaged using AFM with
25 nm resolution and subsequently PA nanoscopy. A landmark
pattern was deposited on the coverslip to ensure that the same
area was imaged with both systems. Two pairs of adjacent gold
nanoparticles were selected from the AFM images to validate
PA images [Figs. 2(a) and 2(b), left column]. While conven-
tional PAM [Figs. 2(a) and 2(b), middle column] cannot resolve
the adjacent nanoparticles, PA nanoscopy images constructed
from c3 [Figs. 2(a) and 2(b), right column] clearly resolve them
with center-to-center spacings of 200 and 110 nm and contrast-
to-noise ratios of 8 and 6, respectively [Figs. 2(c) and 2(d)].
When the illumination beam’s center is adjacent to the gold
nanoparticles [Fig. 2(e)], the PA signal increases linearly with

fluence, yielding a zero c3 at this point. When the illumination
beam’s center coincides with the center of a gold nanoparticle
[Fig. 2(f)], the PA signal exhibits significant nonlinear effects.
Naturally, the nonlinear effects weaken when the illumination’s
beam center is between the gold nanoparticles [Fig. 2(g),
Video 1].

The saturation intensity of metal, such as gold or chro-
mium, is much larger than that of organic molecules. In gold
nanoparticles, therefore, thermal nonlinearity dominates14 and
enables subdiffraction resolution even in conventional PAM,
i.e., a single pulse can generate a significant nonlinear PA (or
photothermal) component and the PSF may appear narrower
than expected.10,24,25 However, the resolution of such a conven-
tional PAM image may vary for different pulse energies. PA
nanoscopy separates the nonlinear components from the linear
components to enhance the spatial resolution. Here, a conven-
tional PA image [Figs. 2(b), middle column, and 2(d)] taken at
the highest pulse energy vaguely shows the gold nanoparticle

Fig. 2 Imaging gold nanoparticles of 100 nm diameter. (a) and (b) Images acquired with atomic force
microscopy (left column), conventional PA microscopy (PAM) (middle column), and third-order PA nano-
scopy, c3 (right column). (c) and (d) Normalized image amplitude along the dashed lines in (a) and (b).
(e) to (g) Raw PA amplitude as a function of the incident pulse fluence when the center of the beam is
(e) outside, (f) at the center, and (g) between the gold nanoparticles. Each black dashed line in (e) to (g) is
the tangent of the nonlinear curve at the origin. The slope of the black dashed line represents the conven-
tional linear PA amplitude (Video 1, QuickTime, 0.3 Mb) [URL: http://dx.doi.org/10.1117/1.JBO.19.8
.086006.1].
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pair. In comparison, the pair is revealed clearly by PA nanoscopy
[Figs. 2(b), right column, and 2(d)].

3.3 PA Nanoscopy of Mitochondria in Fibroblasts
and Melanosomes in Melanoma Cells

Next, we demonstrated label-free PA nanoscopy of mitochon-
dria in fibroblasts and melanosomes in melanoma cells.
Many mitochondrial haemoproteins, such as cytochrome c, as
well as melanin, the primary absorber in melanotic melanoma
cells, have strong optical absorption but negligible fluorescence
quantum yield.26 Cytochromes are endogenous pigments that
are highly specific to the inner mitochondrial membrane and
were successfully used in photothermal and PA imaging of mito-
chondria.27,28 Figures 3(a) and 3(b) present a typical tubular-
shaped mitochondrion in a fibroblast (NIH 3T3) imaged by
conventional PAM and third-order (c3) PA nanoscopy. A similar
structure is revealed by transmission electron microscopy in
Fig. 3(c). The c3 image reveals the shape of a single mitochond-
rion, with features that are 88� 12 nm apart [Fig. 3(d) and
Video 2], which matches our simulation [Fig. 1(e)]. To demon-
strate PA nanoscopy’s ability to resolve different morphometries
of mitochondria, we imaged genetically modified MEFs in
which the normal interconnected mitochondrial network is
fragmented to various degrees through ablation of one or
both Mitofusin (Mfn) genes.29 The mitochondria in wild-type
MEF cells show global interconnectivity (Fig. 4), while in the

Mfn knockout cells, the network is fragmented and individual
organelles are readily resolved (Video 3). Melanoma cells were
imaged with conventional PAM at different scales by varying
the lateral step size (Fig. 5). Images of a cluster of melano-
somes—small organelles containing melanin—were acquired
using conventional PAM, second-order (c2), and third-order (c3)
PA nanoscopy. In the c3 image, unwanted background from out-
of-focus absorbers is rejected, revealing peaks with FWHMs as
small as 80 nm and enabling a better estimation of the melano-
somes’ shapes and sizes (Video 4).

3.4 Optically Sectioned PA Nanoscopy of Red
Blood Cells and Mitochondria in Fibroblasts

Finally, the nonlinear PA effects also provide optical sectioning,
as in multiphoton microscopy,30 which improves the axial
resolution dramatically. To demonstrate this improvement, we
imaged red blood cells using a 1.2 NA objective (beam diameter,
226 nm; depth of focus, 440 nm) at eight different focal depths,
with a step size of 500 nm. By scanning with a lateral step size of
50 nm at each focal depth, the conventional PA image was
acquired with low pulse energy, and the nonlinear PA image
was constructed from c2. Representative cross-sectional images
of the red blood cells from conventional PAM and from PA
nanoscopy are shown in Figs. 6(a) and 6(b), respectively
(Videos 5 and 6). In the conventional PA image, out-of-plane
objects are blurred but not rejected, yielding a signal-to-back-
ground ratio (SBR) of merely 2. PA nanoscopy, in contrast,
detects only the features that reside within the depth of focus,
rejecting background from out-of-focus absorbers (SBR ≅ 16).
Figures 6(c) and 6(d) show three-dimensionally rendered struc-
tural images of mitochondria acquired at eight focal depths,
300 nm apart, by conventional PAM and third-order (c3) PA
nanoscopy. Because the thickness of the fibroblast (∼4 μm)
is greater than the depth of focus, the conventional PA image
[Fig. 6(c)] contains unwanted background from out-of-focus
absorbers. In comparison, owing to its intrinsic optical section-
ing capability, PA nanoscopy [Fig. 6(d)] achieves a much higher
SBR (Video 7).

4 Discussion
For nanosecond-pulsed laser light, heating is the dominant
mechanism of potential damage in biological tissue. To cause
damage, the instantaneous temperature rise must be >150°C,
or the cumulative temperature rise must reach 43°C for a sus-
tained period of time, e.g., >60 s.31,32 In PA nanoscopy of bio-
logical samples, the instantaneous local temperature rise may
reach tens of degrees. For example, at 532 nm, the absorption
coefficient of cytochromes in mitochondria is ∼1 cm−1.27

Hence, for a fluence of 60 J∕cm2, the local temperature rise
is estimated to be ∼15 K. However, despite repeated imaging
(e.g., Figs. 5 and 7, Videos 1 and 5), no evidence of photodam-
age or alteration to the cellular appearance was found. To further
reduce the local temperature rise, shorter laser pulses with lower
energy can be used. Thus, the pulse intensity can still approach
the saturation intensity level, while the incident fluence is
reduced. For gold nanoparticles, the local temperature rise is
inversely proportional to the particles’ diameter.19 We found
experimentally that particles >100 nm in diameter could be
imaged by PA nanoscopy without observable photobleaching.

In PA nanoscopy, the nonlinear PA signal depends on the
nonlinear absorption coefficient. Nonlinear dependence of the
signal amplitude on molecule concentration exists in other

Fig. 3 Imaging mitochondria in NIH 3T3 fibroblasts. A typical tubular
shaped mitochondrion imaged by (a) conventional PAM and (b) third-
order (c3) PA nanoscopy. (c) A similar structure of mitochondria is
revealed by transmission electron microscopy. (d) Normalized
image amplitude along the dashed lines in (a) and (b) (Video 2,
QuickTime, 0.1 Mb) [URL: http://dx.doi.org/10.1117/1.JBO.19.8
.086006.2].
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Fig. 4 Imaging mouse embryonic fibroblasts (MEFs). Confocal microscopy images of (a) a wild-type MEF,
(b) MEFs inwhich theMitofusin-1 genewas knocked out (Mfn1-KO), (c) MEFs inwhich theMitofusin-2 gene
was knocked out (Mfn2-KO), and (d) MEFs in which both Mfn1 and Mfn2 were knocked out (Mfn1,Mfn2-
DKO). Conventional PAM images of (e) a wild-type MEF, (f) Mfn1-KO, (g) Mfn2-KO, and (h) Mfn1,Mfn2-
DKO. Conventional PAM and third-order (c3) PA nanoscopy images of mitochondria in (i) a wild-type MEF,
(j) Mfn1-KO, (k) Mfn2-KO, and (l) Mfn1,Mfn2-DKO. The mitochondria in wild-type MEF cells show global
interconnectivity, while in the Mfn knockout cells, the network is fragmented and individual organelles are
readily resolved (Video 3, QuickTime, 0.7 Mb) [URL: http://dx.doi.org/10.1117/1.JBO.19.8.086006.3].

Fig. 5 Imaging melanoma cells. (a) and (b) Conventional PA images of melanoma cells. A cluster of
melanosomes imaged by (c) conventional PAM, (d) second-order (c2), and (e) third-order (c3) PA
nanoscopy (Video 4, QuickTime, 0.1 Mb) [URL: http://dx.doi.org/10.1117/1.JBO.19.8.086006.4].
(f) and (g) Normalized image amplitude along the dashed lines in (c) to (e).
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modalities, such as coherent anti-Stokes Raman scattering
microscopy and super-resolution optical fluctuation imag-
ing.33,34 The nonlinearity can be used to accentuate spatial
gradients of molecule concentration. When quantification of
molecule concentration is desired, the known relationship can
be used to recover the absorption coefficient. Specificity in
PA nanoscopy can be further improved using multiwavelength
detection and spectral decomposition for different absorbers.27

The imaging speed can be significantly improved by increas-
ing the pulse repetition rate of the laser (e.g., 100 kHz) or by
employing multiple channels.35,36 In addition, existing fluores-
cence-based super-resolution techniques commonly use a
picosecond or femtosecond laser, and a second laser is often
required. By contrast, PA nanoscopy in its current embodiment

relies only on a single nanosecond laser and an ultrasonic trans-
ducer, reducing the complexity and cost of the system. In sum-
mary, label-free PA nanoscopy of nonfluorescent chromophores
greatly extends the capabilities of biological imaging.
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