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Abstract—Photoacoustic computed tomography (PACT) is
an emerging computed imaging modality that exploits optical
contrast and ultrasonic detection principles to form images of
the absorbed optical energy density within tissue. When the
imaging system employs conventional piezoelectric ultrasonic
transducers, the ideal photoacoustic (PA) signals are degraded
by the transducers' acousto-electric impulse responses (EIRs)
during the measurement process. If unaccounted for, this can
degrade the accuracy of the reconstructed image. In principle, the
effect of the EIRs on the measured PA signals can be ameliorated
via deconvolution; images can be reconstructed subsequently by
application of a reconstruction method that assumes an idealized
EIR. Alternatively, the effect of the EIR can be incorporated
into an imaging model and implicitly compensated for during
reconstruction. In either case, the efficacy of the correction can
be limited by errors in the assumed EIRs. In this work, a joint
optimization approach to PACT image reconstruction is proposed
for mitigating errors in reconstructed images that are caused by
use of an inaccurate EIR. The method exploits the bi-linear nature
of the imaging model and seeks to refine the measured EIR during
the process of reconstructing the sought-after absorbed optical en-
ergy density. Computer-simulation and experimental studies are
conducted to investigate the numerical properties of the method
and demonstrate its value for mitigating image distortions and
enhancing the visibility of fine structures.
Index Terms—Iterative image reconstruction, optoacoustic to-

mography, photoacoustic computed tomography, thermoacoustic
tomography, variable projection method.

I. INTRODUCTION

P HOTOACOUSTIC computed tomography (PACT), also
known as thermoacoustic or optoacoustic tomography,

is an emerging imaging modality that holds great promise for
biomedical imaging [1]–[5]. It is a hybrid modality that exploits
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the high optical contrast of soft tissue and the high spatial
resolution of ultrasonic methods. In PACT, short laser pulses
(typically nanosecond-duration) are employed to illuminate
tissue. Absorption of the optical energy results in local heating
followed by thermal expansion, which generates internal
broadband photoacoustic (PA) wavefields via the photoacoustic
effect [1], [2]. From measurements of the PA wavefields ac-
quired outside the object, an image reconstruction method can
be employed to estimate the spatially variant absorbed optical
energy density within the tissue.
When the imaging system employs piezoelectric transducers,

the PA signals at the transducer locations are convolved with the
transducers' acousto-electric impulse responses (EIRs) during
the measurement process. If unaccounted for, this degradation
of themeasurement data will result in a modulation of the spatial
frequency components of the estimated absorbed optical energy
density distribution [6]. In principle, the effect of the EIRs on
the PA signals can be removed via deconvolution if the EIR is
accurately known; subsequently, images can be reconstructed
by application of a reconstruction method that neglects the EIR.
Alternatively, the effect of the EIR can be incorporated into an
imaging model and compensated for implicitly during image
reconstruction [7]–[9].
Unlike the spatial impulse response (SIR) of a transducer,

which can be described accurately by use of a relatively simple
physics-based model [10], [11], a transducer's EIR poses chal-
lenges to an analytical description [8], [12]. Various theoret-
ical models [8], [12], [13] have been proposed for describing
a transducer's EIR. The parameters employed in such models,
however, are either difficult or even impossible to measure ac-
curately in practice. Consequently, in applications of PACT, it
is common for the EIR to be measured experimentally.
Although a conceptually simple task, measurement of the

EIR is subject to noise and other errors [14], which can limit
image quality in PACT. Several techniques for measuring the
EIR have been developed [15]–[18]. It was suggested [16] that
the impulse response could be measured by illuminating the
transducer with an ultra-short laser pulse. However, the impulse
response measured in this way represents the convolution of the
photoacoustic pressure produced by parasitic sources on the sur-
face of the transducer and the sought-after EIR [17]. Alterna-
tively, the derivative of the EIR can be estimated by measuring
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the signal produced by optically illuminating an absorber that
is small relative to the acoustic wavelength. In practice, signals
produced by small absorbers can be weak [14] and errors in their
low frequencies can be amplified if the signals are integrated to
estimate the EIR. Recently, an alternate method to estimate the
EIR was proposed to circumvent this [14], [17]. All of these
methods require precise alignment of the acoustic source with
respect to the transducer axis.When focused transducers are em-
ployed, the acoustic source must be aligned at the focal point.
Misalignment of the acoustic source can result in errors in the
measured EIR. In effect, the measured EIR can be contaminated
by the SIR. For characterizing the spectral directivity of flat
transducers, an optoacoustic source that produces quasi-plane
waves was produced [15]; however, it cannot be readily utilized
to characterize the EIR of focused transducers. Finally, when
transducer arrays are purchased, although they may differ, the
EIRs of individual elements are not typically provided, and it
can be an arduous task to characterize each EIR.
In this work, a joint optimization approach to PACT image re-

construction is developed for mitigating errors in reconstructed
images that are caused by use of an inaccurate EIR. To ac-
complish this, a variable projection method [19]–[21] is em-
ployed to refine the measured EIR during the process of re-
constructing the sought-after absorbed optical energy density
distribution. This method exploits the separable nature of the
PACT imaging model. When an array of transducers is em-
ployed that is characterized by a collection of EIRs, the recon-
struction method will determine a single effective EIR. Simi-
larly, if other modeling errors are present, the response func-
tion produced by the method can be interpreted as an effec-
tive system response that minimizes the inconsistency between
the measured data and the imaging model. Computer-simula-
tion and experimental studies are conducted to investigate the
numerical properties of the method and demonstrate its value
for mitigating image distortions and enhancing the visibility of
fine structures.
The remainder of the article is organized as follows. In

Section II, the relevant physics and PACT imaging model
are reviewed. The proposed image reconstruction method is
described in Section III. The numerical studies and results are
presented in Sections IV–VI. Finally, a summary of the work is
provided in Section VII.

II. BACKGROUND

Below we review the basic imaging physics and discrete
PACT imaging model. The reader is referred to [1], [2], [5],
[22], [23] for comprehensive reviews of PACT.

A. Canonical Imaging Model in Continuous Form

In PACT, a short laser pulse is employed to irradiate an ob-
ject at time and an internal pressure wavefield
is established according to the photoacoustic (PA) effect. Here,

and . In this work, the to-be-imaged object
and surrounding medium are assumed to have homogeneous
and lossless acoustic properties. Additionally, the width of the

laser pulse is assumed to be negligible. Under these assump-
tions, the PA wavefield at a location , where
is the measurement aperture, satisfies

(1)

Here, is a compactly supported and bounded function,
referred to as the object function, which represents the ab-
sorbed optical energy density. The quantity denotes the
(constant) speed-of-sound (SOS) in the object and the back-
ground medium; and denote the thermal coefficient of
volume expansion and the specific heat capacity of the medium
at constant pressure, respectively; and denotes the object's
support volume.
Equation (1), which neglects the response of the imaging

system as well as other physical factors [5], represents an ideal-
ized imaging model for PACT in its continuous form. The asso-
ciated image reconstruction problem is to determine an estimate
of from knowledge of .

B. Discrete Imaging Models that Include Transducer
Responses

When piezoelectric ultrasonic transducers are employed, the
photoacoustic signal is converted to a voltage signal
that is subsequently sampled. Consider the case in which the
transducers collect data at locations, specified by the index

, and in which at each location, temporal
samples are acquired, specified by the index .
The data are acquired at each location with a sampling interval

. The vector represents a lexicographically ordered
representation of the sampled voltage data, where .
The notation will be employed to denote the -th element
of .
Under the same assumptions regarding the imaging physics

that are required to establish (1), the measured data vector is
related to as

(2)

where is the pre-sampled electric voltage signal corre-
sponding to the -th transducer whose active area is cen-
tered at , and is the EIR. is given by (1). The
notation denotes a 1-dimensional (1D) temporal convolution.
Equation (2) represents a continuous-to-discrete (C-D) imaging
model for PACT. Note that (2) assumes that no acoustic lenses
are attached to the piezoelectric surfaces of the transducers.
When point-like transducers are employed, (2) degenerates to

(3)

where is specified by (1).
In order to formulate the image reconstruction task as a nu-

merical optimization problem, the C-D imaging model in (2)
is typically approximated in practice by a discrete-to-discrete
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(D-D) imaging model [24]. To establish a D-D imaging model,
the object function can be approximated as

(4)

where the subscript indicates that is an approximation
of , is the -th component of the coefficient vector ,
and are expansion functions. In this work, inter-
polation-based expansion functions [9], [25] are employed.
On substitution of (4) into (2), a D-D imaging model can be

established as [5], [9]

(5)

where is a matrix, commonly known as the system
matrix. The system matrix depends on the EIR, SIR, and the
choice of expansion functions. Specifically, the elements of
are a function of the sampled EIR values, which will be rep-
resented by the vector . Namely, for

, where denotes the number of samples
required to represent the EIR. In practice, . The ex-
plicit forms of that are employed in this study are provided
in Appendix A.
To emphasize the dependence of on , the D-D imaging

model will be expressed as

(6)

The accuracy of the system matrix will be degraded when the
measured EIR contains errors. When an inaccurate system ma-
trix is employed in an iterative image reconstruction method,
the resulting images can contain distortions and artifacts [26].
Below, we propose a method to circumvent this.

III. PACT IMAGE RECONSTRUCTION WITHOUT ACCURATE
KNOWLEDGE OF TRANSDUCER RESPONSES

A. Formulation of the Image Reconstruction Problem
We formulate image reconstruction as a numerical optimiza-

tion problem

(7)

where the cost function is defined as

(8)

Here, and represent penalty terms, whose impacts
are controlled by the regularization parameters and , respec-
tively. The constraint in (7) reflects that and

for the interpolation-based expansion functions em-
ployed in this work. If the expansion functions are not non-neg-
ative, this constraint should not be enforced.
Equation (7) is fundamentally different from the conventional

formulation of PACT image reconstruction [9], [27] in that the
EIR is treated as an unknown to be estimated along with the
approximation of . This provides the opportunity for the
experimentally-measured EIR to be refined during image re-
construction. Since (8) is non-convex, determining the solution

to (7) can present challenges. As demonstrated below, the use
of experimentally measured EIRs can provide relatively good
initial estimates of that will help the optimization algorithm
avoid local minima. It is also important to properly design the
penalties— and —to regularize the solution.

B. Variable Projection Method
A variable projection (VP) method [28] is employed to refor-

mulate the minimization problem given in (7). This approach
is motivated by previous studies in which the VP method was
employed successfully to estimate unknown parameters of a
system matrix in separable inverse problems [19], [29], [30].
The VP method is based on the observation that

(9)

where is defined in (7). Inspired by this observation,
can be parameterized as

(10)

By use of this parameterization, it can be verified [20], [31] that
can be computed as

(11)

and, subsequently, can be computed via (9). In this way, the
original optimization problem in (7) can be solved by consider-
ation of the two subproblems in (9) and (11).
It is useful to note that the gradient of with re-

spect to can be computed as

(12)

where denotes the discrete gradient operator with respect to
. The derivation of (12) makes use of the optimality condition
for (10); namely, at the point . Equation
(10) simplifies the gradient calculation; the gradient computa-
tion prescribed by (12) is identical to that employed by standard
gradient descent methods for penalized least squares reconstruc-
tion problems.

C. VP Algorithm
A VP algorithm for solving (9) and (11) is provided in

Algorithm 1. An experimentally-measured EIR, denoted by
, is utilized to initialize . Initialization of is achieved by

solving a constrained optimization problem in Line-2. A variety
of established iterative image reconstruction algorithms can be
employed to accomplish this [9], [27]. In Line-6, the estimate
of at the -th iteration, denoted by , is obtained according
to (10) by use of the previously-estimated . The updating
scheme for in Line-7 represents a gradient descent step for
solving (11), where denotes the operator that projects all
negative values to 0. The gradient is computed as specified
in (12). Note that Line-7 does not fully solve (11). Instead,
Line-7 moves along the negative gradient of by a small
step size, denoted by . This distinguishes the VP algorithm
from a block-coordinate descent algorithm [28], in which

. Note that Line-7 can be computed
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much more efficiently than the problem .
In addition, VP algorithms have been reported to possess faster
convergence rates and may be less likely to become trapped
by local minima as compared to block-coordinate descent
algorithms [32].

Algorithm 1 Variable projection (VP) algorithm for joint
estimation of and

1: experimentally-measured EIR.

2:

3: { is the number of algorithm iteration}

4: while stopping criterion is not satisfied do

5:

6:

7:

8: end while

9: and .

D. Implementation of the VP Algorithm

Numerical details regarding the solution of the sub-problems
defined by Lines–2 and –6 in Algorithm 1 are provided below.
A method for solving the constrained minimization problem

in Line-2 has been described in [9], [25]. In this study, we as-
sume that is differentiable and therefore, the constrained
optimization problem can be solved by use of a projected gra-
dient descent algorithm. In particular, we employ the updating
scheme

(13)

where denotes the estimate of after the -th iteration and
denotes an updating step size. The step size is determined by

use of a line search method [33], and the gradient is calculated
as

(14)

where denotes the matrix transpose operator. For
with a typical quadratic form, the computation of is
straightforward. Note that (13) is of the same form as the up-
dating scheme in Line-7 of Algorithm 1, suggesting the same
numerical procedure can be employed to implement both lines.
The second sub-problem in Line-6 of Algorithm 1 can be effi-

ciently implemented due to relatively low dimension of —less
than 100, typically. To be specific, we assume that

, where is given by

...
...

...
. . .

...
...

(15)

Fig. 1. (a) The absorbed energy density map employed in the computer-simu-
lation studies. (b) EIRs employed for 2D experiments.

In this case, Line-6 can be implemented as

(16)

where the matrix satisfies

(17)

The matrix is described in Appendix B. Because of its small
size, can be stored in random access memory
and efficiently inverted by use of established algorithms. In the
studies below, this was accomplished by use of the LU decom-
position method [34].

IV. DESCRIPTION OF COMPUTER-SIMULATION STUDIES
Computer-simulation studies were conducted to investigate

the numerical properties of the VP algorithm.

A. Simulation of Noise-Free Data
The numerical phantom shown in Fig. 1(a) was employed.

The phantom had a support area of and con-
tained six uniform disks that were assigned different values of
absorbed optical energy density.
A 2D circular measurement geometry was employed.
transducers were evenly distributed on a ring of radius 25

mm that enclosed the phantom. The SOS was assumed to be
constant and set at . Since the simulated data
were formed by use of the C-D imaging model in (2), no inverse
crime was committed. The components of this vector corre-
sponded to equally spaced temporal samples over the
interval . Subsequently, the noiseless voltage vector

was obtained by convolving the pressure data with EIR-1 in
Fig. 1(b).

B. Simulation of Noisy Data
Noisy measurement data were computed as

(18)

where is a random vector whose components were indepen-
dent and identically distributed Gaussian random variables. The
standard deviation of each element of was 3% of ,
where denotes the maximum value contained in .

C. Implementation of Image Reconstruction Algorithms
From the simulated noiseless and noisy data, images were

reconstructed by solving the minimization problem in (7) by use
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of Algorithm 1. Conventional quadratic smoothness penalties
were employed:

(19)

(20)

where is the index set of two neighboring pixels of the -th
pixel.
The reconstruction region was repre-

sented by with pixel size 0.05 mm in each
dimension. The initial guess of the EIR employed in the VP al-
gorithm was different than the EIR that was assumed when gen-
erating the simulated data. This served to simulate a situation in
which an experimentally measured EIR contained errors.
Each element in a real-world transducer array possesses its

own EIR. In practice, the differences between the EIRs are
sometimes neglected and an EIR corresponding to a single
element may be used to represent all elements in the array.
In some of the studies below, the EIR employed to initialize
the VP algorithm (EIR-2 in Fig. 1(b)) and the EIR employed
to produce the simulated measurements (EIR-1 in Fig. 1(b))
were experimentally measured from two different transducer
elements in a circular transducer array (see Section VI-B).
EIR-1 was measured by temporally integrating the PA signal
produced by a point source positioned at the focus of the trans-
ducer. EIR-2 was measured by use of the method reported in
[14]. In order to investigate the sensitivity of the VP algorithm
to the initialization of the EIR, we employed different EIRs ob-
tained by degrading EIR-1 as described later. When solving the
sub-problem in Line-2 of Algorithm 1, was initialized as the
zero vector. Algorithm 1 was terminated after 500 iterations,
since it was observed that the changes in the reconstructed im-
ages with more iterations were negligible. When implemented
by use of a single core of an Intel Xeon E5–2640 CPU, each
iteration required approximately 7 s to complete.
For comparison, we also reconstructed images by use of a

conventional gradient-based iterative image reconstruction al-
gorithm that considered the EIR to be fixed. This algorithm was
the same as the one employed to compute the initial guess of
in Line-2 of Algorithm 1, which was described in Section III-D.
As with Algorithm 1, each iteration required approximately 7 s
to complete. The reconstruction algorithm was run for 150 iter-
ations, since the changes in the reconstructed images with more
iterations were negligible. Note that the computational cost of
Line-6 in Algorithm 1 was about 5% of the Line-7 in Algorithm
1, which is why each iteration took almost the same time in both
the conventional iterative method and the VP algorithm.

D. Image Accuracy Assessment
The accuracy of the reconstructed images was assessed in

terms of the root-mean-squared-error (RMSE) between the re-
constructed image and the true phantom as

(21)

Fig. 2. Images reconstructed from noiseless data using (a) the conventional
iterative method with (RMSE ) and (b) the VP
algorithm with and (RMSE ). (c) Image
profiles through the phantom (dashed–dot line) and the images reconstructed
from noiseless data by use of the VP algorithm (solid line) and the conventional
iterative method (CIM, dashed line). The locations of the profiles are indicated
by the “Y” arrows in (a) and (b).

where is the number of pixels, and and are the
-th pixel values of the reconstructed image and phantom, re-

spectively.

V. COMPUTER-SIMULATION RESULTS

A. Images Reconstructed from Noise-Free Data
1) Mitigation of Artifacts and Distortions Caused by Errors

in the Assumed EIR: Fig. 2(a) shows the image reconstructed
by use of the conventional iterative method that utilized a
system matrix based on EIR-2. Different values of the regular-
ization parameter from the interval were considered.
The reconstructed image with the value of that minimized
the RMSE was chosen to represent the best performance of
the conventional iterative method. Fig. 2(a) and the profile in
Fig. 2(c) demonstrate that the use of an inaccurate EIR can
result in strong artifacts and distortions in images reconstructed
by use of the conventional methods.
When the VP algorithm was applied, different values of the

regularization parameter from the interval and
from the interval were considered. The image that
minimized the RMSE was chosen and displayed in Fig. 2(b).
As revealed by this image and the profiles in Fig. 2(c), the VP
algorithm yielded an image with fewer artifacts and distortions,
and image fidelity was improved as reflected by the reduced
RMSE.
2) Effect of Frequency Contents of the Objects and EIR:

Since the voltage signal is generated through convolution of the
pressure data and EIR, the EIR serves as a bandpass filter. Thus,
the information contained in the high frequency components is
lost in the resulting voltage signal. We conducted a series of
computer-simulations to show that the accuracy of the recon-
structed and will be affected by this loss of information.
The original sharp phantom shown in Fig. 1(a) was con-

volved with a Gaussian blurring kernel to generate a smoothed
phantom that possessed smaller relative spatial bandwidths. We
employed the sharp and the smoothed phantoms to generate
pressure data; the pressure data generated by the sharp phantom
had a larger bandwidth than that generated by the smoothed
one, as shown in Fig. 3.
The results shown in Fig. 4 suggest that the reconstructed es-

timates of the EIR become more accurate when the bandwidth
of the is increased (Figs. 4(g) and 4(h)). On the other hand,
the reconstructed estimates of becomemore accurate when
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Fig. 3 Spectra of the pressure data generated by the sharp and smoothed
objects.

the bandwidth of the EIR is increased (Figs. 4(a) and 4(b)). For
a given EIR, the reconstructed estimates of that contain
sharp features contain more oscillations than the estimates cor-
responding to the smoothed versions of . This is because
more high frequency information is lost during the convolution.
3) Effect of Data Incompleteness: Incomplete, or sparsely

sampled, data sets are sometimes acquired in practice. To study
the effect of data incompleteness on the VP algorithm, we recon-
structed images from data corresponding to half of the equally
spaced transducers . Because the data were noiseless,
no explicit regularization was employed in the conven-
tional reconstruction algorithm. However, the explicit regular-
ization was still employed in the VP algorithm because of the
ill-posed nature of the joint reconstruction problem. The results
are shown in Fig. 5. As expected, use of the incomplete data set
resulted in less accurate reconstructed images for both the con-
ventional iterative reconstruction method and the VP algorithm.
However, this effect was more pronounced for the VP algo-
rithm. Note that for the VP algorithm, larger values of the regu-
larization parameters were applied when the incomplete data set
was employed than when the complete data set was employed
(Figs. 5(h) and 5(g)).
4) Effect of Initial Estimate of EIR: The robustness of the

VP algorithm with respect to perturbations in the EIR was in-
vestigated. Perturbed EIRs were generated by adding different
levels of random noise to the low frequency components (first
10% of the total bandwidth, except for the DC component) of
the true EIR. The similarity of a perturbed EIR to the true EIR
was quantified by the correlation coefficient, which is defined
by

(22)

where is the standard deviation of , is the mean of
, , and is the length of and . The value of

ranges from to 1. The maximum value of is achieved when
one EIR is linear with respect to the other EIR with a positive
slope (i.e., , for some constant and ),
which indicates that the two EIRs are ‘identical’ to each other
in terms of similarity. On the other hand, equals when

, for some constant and .
As shown in Fig. 6, when the error in the EIR was small (e.g.,

as with the EIR in Fig. 6(a)), images were reconstructed with
high accuracy using the VP algorithm. When the perturbations

in the EIR were stronger (e.g, as in Fig. 6(c)), artifacts and dis-
tortions in the reconstructed images were still significantly re-
duced by use of the VP algorithm; however, larger values of the
regularization parameters had to be applied. When as in
the initial EIR in Fig. 6(e), no improvement was observed in the
image reconstructed by use of the VP algorithm.

B. Images Reconstructed From Noisy Data

1) Mitigation of Artifacts and Distortions Caused by an
Inaccurate EIR: Fig. 7(a) reveals that use of the inaccurate
EIR in the conventional iterative method created strong arti-
facts and distortions. Fig. 7(b) confirms that the artifacts and
distortions were significantly mitigated when the VP method
was employed. Image profiles for both cases are shown in
Fig. 7(c). The overall accuracy of the recovered EIR, shown
in Figs. 7(d) and 7(e), was improved, but it contained spurious
oscillations.
2) Continuous Dependency on Regularization Parameters:

Images reconstructed by use of the VP algorithm with different
values of the regularization parameter values are shown in
Fig. 8. The recovered EIRs and their corresponding Fourier
spectra are shown in Figs. 9 and 10, respectively. The RMSE
values are computed and displayed together with the corre-
sponding images. As expected, the images reconstructed with
smaller values of contain higher noise levels, while images
using larger possess a reduced noise level. However, larger
values of also caused artifacts in the reconstructed images.
The same observation can be made for the effect of the regular-
ization parameter on the recovered EIR. One also observes
that the reconstructed images and EIRs depend continuously
on the regularization parameters and , i.e., small changes
in the regularization parameters cause minor changes in the
reconstructed images and EIRs.

VI. EXPERIMENTAL VALIDATION

The proposed algorithm was further investigated by use of
experimental data acquired from a 512-element full-ring-array
photoacoustic computed tomography system [35].

A. Phantom Object

The first object was comprised of a single black needle of
diameter 0.25 mm and length 20 mm embedded in an agar gel.
The second object was comprised of a mouse kidney embedded
in an agar gel. In both experiments, the object and the transducer
array were aligned so that the object of interest laid in the focal
plane of the transducer array.

B. Data Acquisition

The illumination light source was a tunable optical parametric
oscillator (OPO) laser (basiScan, Spectral Physics) pumped by
a Nd:YAG laser (Brilliant B, Quantel) with 12 ns pulse duration
and 10 Hz pulse repetition rate. Before reaching the sample sur-
face, the laser beam was homogenized using an optical diffuser
(EDC-5 Photonics) to form a 25-mm-diameter circular light
beam. For both experiments, we tuned the OPO laser output to a
wavelength of 610 nm. The maximum light intensity at the sur-
face of the sample was approximately , which is well
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Fig. 4. The first row shows results corresponding to the case where the spectra of the generated pressure data are narrower than that of the EIR. The second row
shows results corresponding to the case where the spectra of the generated pressure data are broader than that of the EIR. The first column shows the reconstructed
images, the second the profile plots, the third the recovered EIRs in the time-domain, and the fourth the recovered EIRs in the frequency-domain

Fig. 5. Images reconstructed from incomplete data sets. The first row shows the
images reconstructed using the true EIR and the conventional iterative method.
The second row shows the images reconstructed using the wrong EIR and the
conventional iterative method. The third row shows the images reconstructed
using the VP algorithm. Images from left to right in each row are reconstructed
using incomplete (half) data, full data, and the profile plots, respectively. The
locations of the profiles are indicated by the “Y” arrows in the images. No reg-
ularization was employed with the conventional iterative method. For the VP
algorithm, the regularization parameter values were
and for the reconstructions using incomplete and
full data, respectively.

below the American National Standard Institute (ANSI) limit at
610 nm [36].
The PA signals were detected by a 512-element full-ring

transducer array with 5 MHz central frequency (80% band-
width) and 50 mm ring diameter. Each element in the array was

Fig. 6. Images reconstructed by use of different initial guesses of the EIR. The
correlation coefficients between the true EIR and its initial guess were ,

, and for the first, second, and third rows, respectively. The
first column shows the true, initial, and recovered EIRs. The second column
shows the images reconstructed by use of the VP algorithm. The regularization
parameter values were ;

; and for the first, second, and third rows,
respectively.
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Fig. 7. Images reconstructed from noisy data using (a) the conventional itera-
tive method and (b) the VP algorithm. (c) Image profiles through the phantom
(dashed line) and the images reconstructed from noisy data by use of the VP al-
gorithm (solid line) and the conventional iterative method (dash–dot line). The
locations of the profiles are indicated by the “Y” arrows in (a) and (b). (d) The
true EIR (dashed line), the initial guess for the EIR (dash–dot line), and the EIR
recovered by use of the VP algorithm (solid line). (e) The spectra of the corre-
sponding EIRs.

Fig. 8. Images reconstructed from noisy data by use of the VP algorithm cor-
responding to regularization parameters and

. The values of increase from left to right,
and the values of increase from top to bottom. The RMSEs of the subfigures
are (a) , (b) , (c) , (d) , (e) , (f) ,
(g) , (h) , and (i) . The images are displayed in their re-
spective full dynamic ranges.

mechanically shaped into an arc to produce an axial focal length
of 19 mm. At each transducer location, 1300 temporal samples
were acquired at a sampling rate of 40 MHz. Accordingly, the
dimension of the measured data set was 1300 512. Additional
details of the imaging system can be found in [35], [37].

C. Image Reconstruction
Two numerical imaging models were employed in the

studies involving experimental data. Both models are de-
scribed in Appendix A. In the first, the SIR effect was not con-
sidered and a 2D interpolation-based D-D imaging model was
employed. Most of the presented results were reconstructed
by use of this imaging model. For the needle phantom, the
size of the reconstructed region was , which
was represented by . For the mouse kidney,
the size of the reconstructed region was ,
which was represented by . For both ob-
jects, the pixel size was . The needle and
kidney data were processed using a single core of an Intel
Core i7–3770 CPU (4 cores, 3.4 GHz). It required approx-
imately 10.5 s and 5 s to complete one iteration for the
needle and kidney data sets, respectively. The second imaging
model included SIR effects and was based on a 3D spher-
ical voxel imaging model [7], [38]. This model was only
applied to the kidney data. In this case, only a single slice
through the object at the focal plane was reconstructed. The
object was represented by voxels of dimension

. In order to model SIR effects, each
transducer surface was divided into four equal parts in the el-
evation direction, and a far-field approximation was employed
to calculated the measured pressure for each sub-element, also
referred to as a ‘patch’ [38]. We selected 4 patches because
the maximum phase error in this case was less than one-eighth
of the wavelength corresponding to the central frequency of
the transducer. The algorithm was implemented by use of the
CUDA parallel programming framework and executed on a
single GPU (Tesla K20c). Processing the kidney data required
15 minutes per iteration. Details on how the 3D model was
constructed can be found in Appendix A.
In both cases, images were reconstructed by use of both the

VP algorithm and the conventional algorithm described previ-
ously. The VP algorithm was terminated after 120 iterations,
while the conventional method was terminated after 50 itera-
tions. The initial guess for the EIR was an experimentally-mea-
sured EIR from an element in the PACT system, and the initial
guess for was all zeros. The regularization functions employed
corresponded to those in (19) and (20). The values of the regu-
larization parameters and were determined empirically. We
swept the values of these parameters over wide ranges with a
small step size. Instead of attempting to identify optimal reg-
ularization parameter values, which are application dependent,
we investigated how the regularization parameter values affect
the reconstructed images.

D. Results: Needle Phantom
Fig. 11 displays images of the needle phantom reconstructed

by use of the simple backprojection method [39]. Figs. 12 and
13 display the images reconstructed by use of the conventional
iterative method and VP algorithm, respectively.
Figs. 12 and 13 show that the width of the needle in the re-

constructed image increases as the regularization parameter
increases for both the conventional iterative method and the
VP algorithm. The images reconstructed by use of the VP al-
gorithm appear to have a reduced noise level compared to the
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Fig. 9. The recovered EIRs corresponding to the reconstructed images in Fig. 8, displayed in the time-domain.

Fig. 10. The recovered EIRs in the frequency domain corresponding to the reconstructed images in Fig. 8.

images reconstructed by the backprojection and conventional
iterative methods, regardless of the choice of the regularization
parameter values. The profile plots corresponding to these three
methods are shown in Fig. 14. Since the image of the coeffi-
cient vector and the EIR are recoverable only up to a mul-

tiplicative constant, every profile was normalized for compar-
ison. These plots demonstrate that the image reconstructed by
use of the VP algorithm possessed a more uniform background
than those obtained by the backprojection and the conventional
iterative methods.
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Fig. 11. Image of a needle phantom reconstructed using backprojection. The
zoomed-in image corresponds to the ROI of the dashed rectangle.

Fig. 12. Reconstructed needle phantom image using the conventional iter-
ative method with the non-negativity constraint. (a) and
(b) . The zoomed-in image corresponds to the ROI of the
dashed rectangle.

Fig. 13. Images reconstructed by use of the VP algorithm with regularization
parameter values of (a) and (b) .
The zoomed-in images corresponds to the ROI denoted by the dashed rectangle.
The images are displayed in their respective full dynamic ranges. (c) The initial
guess for the EIR (the same for both cases) and the recovered EIR for the case
where .

E. Results: Mouse Kidney

The images and EIRs reconstructed by use of the VP algo-
rithm that was based on the 2D imaging model that neglected
the SIR are shown in Figs. 15 and 16. The latter figure contains
results corresponding to different values for the regularization
parameter . From Fig. 15, it can be observed that use of the
conventional iterative method that utilized the measured EIR
resulted in distortions and loss of details in the reconstructed
images. Use of the VP algorithm improved the contrast and the

Fig. 14. Image profiles at along the -axis from to
0 mm extracted from images ( and centered at )
reconstructed by the backprojection algorithm (dashed line), the conventional
iterative method (CIM) with (dash–dotted line), and the VP
algorithm with , (solid line).

Fig. 15. (a) Image reconstructed by use of the conventional iterative method
without the non-negativity constraint. (b) Image reconstructed by use of the con-
ventional iterative method with the non-negativity constraint. (c) Image recon-
structed by use of the VP algorithm, with the initial guess of the EIR shown
in the right side of subfigure (c). The zoomed-in image corresponds to the ROI
of the dashed rectangle. Images are displayed in their full dynamic ranges re-
spectively. The right plot shows the recovered and initial EIR. The SIR was
ignored in these studies. No regularization was employed for the conventional
iterative method. The regularization parameters for the VP algorithm were

.

details in the reconstructed images (Figs. 15(c) and 16(a)). Fur-
thermore, the images reconstructed by use of the VP algorithm
had a more uniform background.
In Fig. 17, the results corresponding to use of the 3D imaging

model that incorporated SIR effects are shown. The EIR esti-
mated by the VP algorithm is also shown. In Fig. 18, images and
EIRs reconstructed by use of the VP algorithm with different
regularization parameters values are shown. Similar to the case
described above where the transducer SIR was neglected, these
results reveal that use of the VP algorithm can produce images
with a cleaner background and enhanced spatial resolution than
those yielded by use of a conventional iterative algorithm that
employed the measured EIR. For example, detailed information
regarding the vessels near the organ's periphery was better pre-
served by the VP algorithm than by the conventional iterative
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Fig. 16. The first column displays images reconstructed by use of the VP al-
gorithm for different regularization parameter values. The values of were

, and for the first, second, and third rows,
respectively. The value of was 5000 for all cases. The zoomed-in region cor-
responds to the ROI denoted by the dashed rectangle. The grayscale windows
were [0, 0.16]. The right column shows the initial and recovered EIRs. The SIR
was ignored in all cases.

algorithm. These images corroborate our assertion that the VP
algorithm can significantly reduce the artifacts and distortions
in the reconstructed image. It is also worth pointing out that,
unlike the numerical phantom studies, the artifacts and distor-
tions in the images may be caused not only by the inaccurate
EIR but also by other factors, such as neglecting acoustic het-
erogeneities and the variation of the EIRs among the elements of
the transducer array. In such cases, the EIR estimated by the VP
algorithm represents an effective system impulse response that
minimizes the inconsistency between the measured data and the
imaging model.

F. Auto-Focus Capabilities
Conventional PACT reconstruction algorithms assume that

the medium is described by a constant speed-of-sound (SOS)
value. In practice, this value may not be known precisely and
can be tuned [40] to maximize the spatial resolution of the
reconstructed images. The effect of an incorrect SOS value
can sometimes be compensated for by use of the VP algorithm
due to modification of the EIR during the joint estimation.
Figs. 19(a) and 19(b) show images reconstructed by use of the
conventional iterative method and the VP algorithm, respec-
tively, when different constant SOS values are assumed. The

Fig. 17. (a) Image reconstructed by use of the conventional iterative method
with a non-negativity constraint ( ). The grayscale window
was . (b) Image reconstructed by use of the VP algorithm (

), with the initial EIR guess shown in the right panel of sub-
figure (b). The zoomed-in image corresponds to the ROI of the dashed rectangle.
The grayscale window was . The right plot shows the recovered and
initial EIR. The SIR was accounted for in both cases. (a)
(b) .

2D imaging model that ignored the SIR was employed. Nearly
identical images were reconstructed by use of the VP algorithm,
even though the assumed SOS values were different in each
case. The images contained reduced artifact levels as compared
to those reconstructed by use of the conventional method.
The recovered EIRs differed by a time shift (as displayed in
Fig. 19(c)). Since the object was located near the center of
the transducer array and was small compared to the radius of
the array, the scaling effect due to the inaccurate SOS can be
approximated by the shift of the EIR, which explains how the
recovered EIR compensates for the error in SOS value.

VII. CONCLUSIONS AND DISCUSSION

In this study, we proposed a joint reconstruction approach
for PACT that mitigates artifacts in the reconstructed images
caused by use of an inaccurate EIR. A nonlinear least squares
minimization problem was formulated, which exploited the
bi-linear structure of the imaging model, and a VP algorithm
was employed to solve the minimization problem. The nu-
merical properties of the VP algorithm were also investigated.
The results demonstrate that the joint reconstruction approach
for estimating both the system response and the absorbed
optical energy density can increase the fidelity of the recon-
structed image. Although not presented, we also conducted
computer-simulation studies based upon an existing three-di-
mensional small animal imaging system [9], [41], and the
results were consistent with those presented.
It should be emphasized that the recovered EIR, in general,

is not equivalent to the actual EIR of a system. Instead, the VP
algorithm finds the linear temporal filter that best matches the
measured pressure to the modeled pressure in a penalized least
squares sense. If the EIR is the only source of model error, the
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Fig. 18. Images reconstructed using the VP algorithm for different regularization parameter values with the same initial guess of the EIR. The values of were
, , and for the first, second, and third columns, respectively. The values of were 1000 and 10000 for (a) and (c), respectively. The zoomed-in

image corresponds to the ROI denoted by the dashed rectangle. The grayscale windows were [0, 0.16]. (b) and (d) show the corresponding recovered EIR.

filter will correspond to the EIR. However, if other system in-
consistencies, such as sound speed variations, acoustic absorp-
tion, or the spatial impulse responses of the transducers, are
present, the VP algorithm will produce an estimated filter that
attempts to mitigate these sources of model error. In practice, it
can be difficult or overly time-consuming to explicitly account
for all these potential sources of inconsistency in a PACT re-

construction algorithm. Further, including them can result in a
tremendous increase in the computational cost of the algorithm.
Since the VP algorithm can provide a rough correction for these
effects, it can serve as a cheap and effective way to compensate
for model mismatch.
The minimization problem defined in (7) is non-convex.

Hence, the optimization algorithm may converge to a local
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Fig. 19. Reconstructed images and EIRs using different speeds of sound. The
zoomed-in image corresponds to the ROI of the dashed rectangle. (a) Images re-
constructed by use of the conventional iterative method with different speeds of
sound. The speeds of sound employed in the first, second, and third images are

, , and , respectively. for all re-
constructions. The grayscale windows were . (b) Images reconstructed
by use of the VP algorithm with different speeds of sound. The speeds of sound
employed in the first, second, and third images are , , and

, respectively. , and for all reconstruc-
tions. The grayscale windows were . (c) The initial and recovered EIRs.

minimum. However, the literature [32] suggests that the VP
algorithm is more likely to converge to the global minimum
than other algorithms such as block-coordinate descent al-
gorithms. Our computer-simulation studies revealed that the
VP algorithm consistently converged to accurate solutions,
suggesting that utilizing proper regularization methods and
good initial guesses will improve the ability of the algorithm
to avoid local minima. The experimental results confirmed the
effectiveness of the proposed algorithm for mitigating image
artifacts and distortions.
There remain several topics for future investigation. Our

current implementation involves two regularization parameters.
Although numerical methods—such as the -curve method
[42]—have been proposed for determining reasonable values for
these parameters, these methods do not work perfectly in all ap-
plications. In this study, to reveal the impact of parameter settings
on reconstruction algorithm performance, we reconstructed a
collection of images using different regularization parameter
values. The optimal regularization parameter values should
depend on a specified diagnostic task and observer [39] and
their determination represents a topic for future investigation.
There also remains a need to investigate methods for incor-

porating additional a priori information regarding the EIR into

the reconstruction problem. If we assume the EIR is sufficiently
smooth, spline functions are a natural choice to parameterize
the EIR and reduce the number of unknowns in the minimiza-
tion problem. We conducted numerical studies to evaluate this.
Although not shown here, the results suggest that, depending on
the interpolation points, the number of unknowns employed to
represent the EIR can be reduced (from 64 to 32 in this study).
However, the reconstructed images and EIRs were similar to
the results obtained without using the spline functions. Besides,
no computational advantages (such as time and memory usage)
were observed. It is also possible to employ an analytic pa-
rameter-based EIR model [13]. To accurately model a realistic
transducer, tens of parameters are needed. How to effectively
solve the associated minimization problem remains a topic for
future work. Non-smooth sparsity-promoting penalties, such as
TV penalties [43], can be applied to the absorbed energy density
[9]. In the VP algorithm, the updating scheme for is based on
a gradient-descent method that exploits the differentiability of
the smoothness penalty (i.e., (19)). When non-smooth penalties
are adopted, this gradient-descent method can potentially be re-
placed by a proximal gradient algorithm [44].

APPENDIX A
EXPLICIT FORMS OF SYSTEM MATRICES

System Matrix Based on Interpolation Expansion Functions:
In the 2D computer-simulation studies, an interpola-

tion-based imaging model was employed. In the interpola-
tion-based D-D imaging model, the coefficient vector is defined
as samples of the object function on the nodes of a uniform
Cartesian grid:

(23)

where specifies the location of the -th node
of the uniform Cartesian grid. The definition of the expansion
function depends on the choice of interpolation method. If a tri-
linear interpolation method is employed, the expansion function
can be expressed as

if
otherwise

(24)

where is the distance between two neighboring grid points.
In principle, the interpolation-based D-D imaging model can

be constructed by substituting (23) and (24) into (2). In practice,
however, implementation of the surface integral over is dif-
ficult for the choice of expansion functions in (24). Therefore,
utilization of the interpolation-based D-D model commonly as-
sumes the transducers to be point-like.
Since (1) can be reformulated as the well-known spherical

Radon transform (SRT)

(25)

where the function is related to as

(26)
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the implementation of is decomposed as a three-step opera-
tion:

(27)

where , , and are discrete approximations of the SRT
(25), the differential operator (26), and the operator that imple-
ments a temporal convolution with EIR, respectively. was
implemented in a way that is similar to the ‘ray-driven’ imple-
mentation of Radon transform in X-ray CT, i.e., for each data
sample, we accumulated the contributions from the voxels that
resided on the spherical shell specified by the data sample. By
use of (4), (23), (25), and (24), one obtains

(28)
where with specifying the loca-
tion of the -th point-like transducer, and and denote the
numbers of divisions over the two angular coordinates of a local
spherical coordinate system. The differential operator in (26) is
approximated as

(29)

where . Finally, the continuous tem-
poral convolution is approximated by a discrete linear convolu-
tion as

(30)

where .

3D Spherical Voxel-Based Imaging Model Including SIR:
For the 3D spherical voxel-based model, the expansion func-

tions were defined as

if ,
otherwise (31)

where specifies the coordinate of the -th
grid point of a uniform Cartesian lattice, denotes the trans-
pose of a vector, and is the half spacing between lattice points.
The coefficient vector es defined as

(32)

where and are the volumes of a cubic voxel of
dimension and , respectively. Let denote the pre-
sampled voltage signal that would be produced by , where

is the approximation of established by use of the
chosen expansion functions. By use of (2), (4), and (31), it can
be verified that

(33)

Here, is the ‘N’-shaped profile produced by a uniform
sphere of radius :

(34)

where is the Heaviside step function and

(35)

is the SIR of the -th transducer. By temporally sampling (33)

and employing the approximation , the

D-D imaging model in (5) is established [9], where

(36)

Here, denote the entry in the -th row and -th column
of the matrix. When the transducer has a flat and rectangular
detecting surface of area , under the far-field assumption,
the temporal Fourier transform of the SIR is given by [9]

(37)

where and specify the transverse coordinates in a local
coordinated system that is centered about the th transducer.
Since the surfaces of the focused transducers employed in

the reported experimental studies are curved, direct use of the
far-field approximation assuming a flat transducer can result in
patterned image artifacts. To alleviate this limitation, we adopt
a simple divide-and-integrate algorithm [38], where each trans-
ducer element face is divided into identical patches. Each
patch is considered to be flat and described by the far-field ap-
proximation. Let be the resulting SIRs that are spec-
ified by the patch index . The SIR for the original
transducer face is then approximated by averaging the
patch SIRs over all patches:

(38)

APPENDIX B
AN EQUIVALENT REFORMULATION OF THE IMAGING MODEL

First observe that a D-D model without considering EIR can
be derived as

...
(39)

Here, the vector represents a lexicographically ordered
representation of the sampled pressure data, the dimension is
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defined by the product of the number of pressure temporal sam-
ples acquired at each transducer location and the number of
transducer locations , and
is the sampled pressure data corresponding to location index .
The system matrix , without considering EIR, is of dimen-
sion , whose elements are defined by (28) and (29). To
update using (10), another equivalent formulation of the D-D
image model (6) can be established as

...

...
...

(40)

...
(41)

Here, denotes the discrete temporal convolution and is the
convolution matrix corresponding to . Matrix is defined by
(41). The number of temporal samples (of each transducer),
(of EIR), and (of the pressure) satisfy the relation

. With this reformulation, one has
.
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