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Abstract. Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics.
Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic
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1 Introduction
Photoacoustic tomography (PAT), also called optoacoustic
tomography, is a three-dimensional (3-D) imaging modality
based on the photoacoustic (PA) effect. Although the PA effect
was discovered more than a century ago by Alexander Graham
Bell, it has found applications in biomedical imaging only in the
last decade or so. Nowadays, PAT is one of the largest research
areas in biomedical optics and is still growing rapidly.1

Harnessing both rich optical absorption contrast and high
ultrasonic resolution, PAT is a hybrid imaging modality that
can image deep tissues. While pure optical imaging modalities
can also detect optical absorption by monitoring intensity var-
iations in transmitted or reflected light, their sensitivities are
usually two orders of magnitude lower than that of PAT.2 In
addition, because acoustic waves scatter much more weakly
than light in biological tissues, they can propagate a greater dis-
tance than photons without losing their original propagation
directions, providing PATwith high spatial resolution at depths.
While pure ultrasonic imaging can also achieve high spatial
resolution in deep tissues, its mechanical contrast is incapable
of providing certain physiological parameters, such as the
oxygen saturation of hemoglobin and the metabolic rate of
oxygen.

Several comprehensive reviews of PAT can be found in the
literature;1,3–21 some are general,1,3–5,11,21 and some focus on spe-
cific areas, such as PAT’s application in imaging molecules,9

microvasculature,6 tumors,17 the brain,16 and small animals.15

Here, we will review the fundaments of PAT, including its prin-
ciples, major implementations, system characteristics, main con-
trast agents, and recent applications.

2 Principles

2.1 Initial Pressure Rise

In PAT, a short-pulsed light source is typically used to irradiate
the tissue, resulting in broadband PA waves with a frequency
content extending to several tens or even hundreds of megahertz
for acoustic detection. Following absorption of the light, an

initial temperature rise induces a pressure rise, which propagates
as a photoacoustic wave and finally is detected by a single-
element ultrasonic transducer or a transducer array. There are
two important time scales in the generation of PA waves,2 the
thermal relaxation time (τth) and the stress relaxation time
(τs). τth denotes the thermal relaxation (thermal diffusion)
time of the desired voxel, and is given by

EQ-TARGET;temp:intralink-;e001;326;442τth ¼
d2c
αth

; (1)

where dc is the desired spatial resolution and αth is the thermal
diffusivity (m2∕s). τs, which characterizes the stress relaxation
time of the desired voxel, is given by

EQ-TARGET;temp:intralink-;e002;326;366τs ¼
dc
vs

; (2)

where vs is the speed of sound (m/s).
Upon laser excitation, the fractional volume expansion of

the heated region dV∕V can be expressed as

EQ-TARGET;temp:intralink-;e003;326;292

dV
V

¼ −κpþ βT; (3)

where κ denotes the isothermal compressibility (Pa−1), p
denotes the change in pressure (Pa), β denotes the thermal coef-
ficient of volume expansion (K−1), and T denotes the change in
temperature (K).

If the laser pulse duration is shorter than τth and τs, the exci-
tation satisfies both thermal and stress confinements. In this
situation, the fractional volume change is negligible. Thus, the
initial pressure rise p0 can be derived from

EQ-TARGET;temp:intralink-;e004;326;164p0 ¼
βT
κ
: (4)

Further, the local temperature rise can be expressed as

EQ-TARGET;temp:intralink-;e005;326;112T ¼ ηthAe

ρCV
; (5)
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where ηth is the percentage of absorbed light converted into
heat, and Ae is the specific optical energy deposition (J∕m3).
Substituting Eq. (5) into Eq. (4), we have

EQ-TARGET;temp:intralink-;e006;63;719p0 ¼
β

κρCV

ηthAe: (6)

By defining the Gruneisen parameter Γ (dimensionless) as

EQ-TARGET;temp:intralink-;e007;63;667Γ ¼ β

κρCV
; (7)

Equation (6) becomes

EQ-TARGET;temp:intralink-;e008;63;614p0 ¼ ΓηthAe: (8)

For single-photon optical absorption, Ae is proportional to the
local optical fluence F (J∕cm2). In this case, Eq. (8) becomes

EQ-TARGET;temp:intralink-;e009;63;561p0 ¼ ΓηthμaF; (9)

where μa is the optical absorption coefficient (cm−1). Based on
Eq. (9), the initial pressure rise is proportional to μa and F. Γ
and ηth are usually approximated as constants, although they
have been found to depend on the tissue type;22,23 thus, if
p0 can be measured and F is known, μa can be recovered.
After the generation of the initial pressure p0, an acoustic
wave starts to propagate at the speed of sound in the material.
The propagation in an inviscid medium can be described by
general photoacoustic equations in the time-domain, as dis-
cussed in Sec. 2.2.

2.2 Photoacoustic Wave Propagation

The propagation and generation of acoustic pressure pð~r; tÞ at
position ~r and time t is governed by the following wave equa-
tion:

EQ-TARGET;temp:intralink-;e010;63;357

�
∇2 −

1

v2s

∂2

∂t2

�
pð~r; tÞ ¼ −

β

κv2s

∂2Tð~r; tÞ
∂t2

: (10)

Note that T represents the temperature rise instead of the
temperature, i.e., the temperature rise above its initial value.
Under the condition of thermal confinement, where heat con-
duction is negligible, the heat diffusion equation becomes

EQ-TARGET;temp:intralink-;e011;63;268ρCV

∂Tð~r; tÞ
∂t

¼ Hð~r; tÞ; (11)

where H is the heating function, defined as the thermal energy
deposited per unit volume and per unit time. Note that the heat-
ing functionH is related to the specific optical energy deposition
Ae by the following equation:

EQ-TARGET;temp:intralink-;e012;63;181Hð~r; tÞ ¼ ηth
∂Aeð~r; tÞ

∂t
: (12)

Substituting Eq. (11) into Eq. (10), we have

EQ-TARGET;temp:intralink-;e013;63;128

�
∇2 −

1

v2s

∂2

∂t2

�
pð~r; tÞ ¼ −

β

CP

∂Hð~r; tÞ
∂t

; (13)

where CP is the specific heat capacity at constant pressure.

Solving Eq. (13) with the Green function approach, we have
the following delta heating response:

EQ-TARGET;temp:intralink-;e014;326;730pδð~r; tÞ ¼
1

4πv2s

∂
∂t

�Z
d~r 0

p0ð~r 0Þ
j~r − ~r 0j δ

�
t −

j~r − ~r 0j
vs

��
; (14)

where p0ð~r 0Þ is the initial pressure rise at location ~r 0. If the heat-
ing pulse has a finite duration, the response can be computed by
convolution

EQ-TARGET;temp:intralink-;e015;326;652pð~r; tÞ ¼
Zþ∞

−∞

dt 0pδð~r; t − t 0ÞSðt 0Þ; (15)

where SðtÞ is the temporal profile of the excitation pulse.

3 Photoacoustic Image Formation
The goal of PA imaging is to retrieve the local pressure rise p0

inside the tissue. Based on Eq. (9), if we know the local optical
fluence F, the absorption coefficient μa can then be calculated.
In practice, the adjacent fluence F in the tissue is usually com-
parable, but the absorption coefficient μa differs considerably.
For example, blood in the visible light region has much stronger
absorption than other components in tissue.14 Thus, if F is
assumed to be regionally homogeneous in anatomic PA imag-
ing, then p0 can be used to directly map the relative absorption
coefficient μa. There are two basic methods to recover the
original p0 distribution inside the target once the pressures at
the observation points are measured:11 reconstruction-based
image formation and focused-scanning image formation. While
the former is the basis of photoacoustic computed tomography
(PACT), the latter is commonly used for photoacoustic micros-
copy (PAM) and occasionally for photoacoustic macroscopy
(PAMac). Because PAM and PAMac mainly differ in their
spatial resolution, i.e., PAM has a spatial resolution less than
50 μm while PAMac does not, we will only discuss PAM in
this review paper.

3.1 Image Formation in Photoacoustic Computed
Tomography

For PACT, the light is expanded to illuminate the whole object to
be imaged. PA signals are acquired at multiple locations around
the object, either by using a transducer array or by scanning
a single-element transducer to simulate an array. Next, back-pro-
jecting all the PA data, similar to traditional computed tomog-
raphy or positron emission tomography imaging, generates PA
images of the object. Note that in order to detect PA signals from
the same object at multiple locations, a transducer or transducer
array with a large acceptance angle is desirable. Several methods
are widely used for PA image formation,24,25–30 such as universal
back-projection (UBP)25 and time reversal.26

Demonstrated in spherical, cylindrical, and planar detection
geometries, the UBP algorithm has the following formula:

EQ-TARGET;temp:intralink-;e016;326;157p0ð~r 0Þ ¼
1

Ω0

Z
S
dΩ0 × 2

�
pð~r; tÞ − t

∂pð~r; tÞ
∂t

�����
vst¼j~r−~r 0j

;

(16)

where Ω0 is the solid angle of the entire detection surface Swith
respect to a source point at ~r 0. The factor dΩ0∕Ω0 weighs the
contribution from each element on the detection surface S. The
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term pð~r; tÞ is the direct back-projection of the detected PA sig-
nals onto a spherical surface centered at ~r. The first derivative
with respect to time represents a ramp filter, which suppresses
low frequency signals. In the UBP algorithm, the medium is
assumed to be acoustically lossless and homogeneous.

The time-reversal method has recently been recognized as
the least restrictive reconstruction algorithm: it can work for
any closed geometry and can incorporate acoustic hetero-
geneities. In the time-reversal method, the measured acoustic
pressure is retransmitted into the medium in time reversed
order. The same wave equation is solved from t ¼ T to
t ¼ 0, where T is the maximum time for the acoustic wave
to traverse the detection region. The measured pressure data
are treated either as boundary conditions or as a source. To
solve the wave equation, numerical methods are employed,
such as time-domain finite-difference techniques or k-space
pseudospectral methods. Thus, the time-reversal method is
more computationally intensive than the UBP method, espe-
cially for 3-D image reconstruction.

3.2 Image Formation in Photoacoustic Microscopy

Different from reconstruction-based methods, the focused-scan-
ning scheme of PAM usually focuses both the optical excitation
and acoustic detection. If the optical focus is tighter than the
acoustic focus, the technique is called optical resolution photo-
acoustic microscopy (OR-PAM);31,32 otherwise, it is called
acoustic resolution photoacoustic microscopy (AR-PAM).33–35

In both cases, each laser pulse generates a one-dimensional
(1-D) photoacoustic image (A-line) along the axial direction.
Raster-scanning laterally and then piecing together all the A-
lines provides a 3-D PA image. Because each signal acquired
by the transducer directly represents a 1-D image of a single
line inside the object after minimal signal processing, there is
no need for image reconstruction. Although raster-scanning is
used in most cases, there are alternative scanning methods,
such as circumferential-section-scanning for endoscopic imag-
ing,36,37–40 3-D arbitrary scanning for blood vessel monitoring,41

and random access scanning for cell tracking.42

4 Photoacoustic Systems and Their
Characteristics

As mentioned earlier, based on their different image formation
mechanism, PA systems can be classified as either reconstruction-
based PACT or focused-scanning-based PAM. In this section, we
discuss typical PA systems and their characteristics, including
spatial resolution, imaging speed, and penetration depth.

4.1 Photoacoustic Computed Tomography

Current PACT systems use spherical,43,44–46 cylindrical,15,47–52 or
planar detection geometry.53–60 Each geometry has several
implementations. For spherical-view systems, either an arc-
shaped transducer array44 or a hemispherical array with a spiral
pattern45,46 is used. In both cases, mechanical scanning is
required for dense spatial sampling, and 3-D reconstruction is
performed. Figure 1(a) shows a hemispherical array based
PACT system,46 with 512 ultrasonic transducer elements distrib-
uted in a hemispherical shell with a radius of 127 mm. The
diameter of each transducer element is 3 mm, and the center
frequency is 2 MHz, with a 70% bandwidth. The transducer
array is scanned spirally to achieve dense spatial sampling
for image reconstruction. As shown in Fig. 1(a), the bottom
of the hemispherical shell contains an aperture for light delivery.
In this case, pulses from an Alexandrite laser at 756 nm are used
to excite the target. Depending on the spiral scanning pattern,
total data acquisition time varies from 12 s for the smallest spiral
(24-mm radius) to 3.2 min for the largest spiral (96-mm radius).
Using a thin graphite fiber phantom (6-μm diameter), the reso-
lution of this system was quantified to be 0.42 mm. Because
spherical-view detection was implemented, this resolution was
constant at different graphite fiber orientations. A 5.3-cm
penetration was achieved in the phantom. As shown in Fig. 1(b),
blood vessels in the breasts of two healthy volunteers were
clearly imaged although their depths are not shown.

A representative cylindrical-view PACT system48 is shown in
Fig. 2. The system contains a 512-element full ring transducer
array with a ring diameter of 5 cm. Each transducer element has
a center frequency of 5 MHz and an 80% (one-way) detection

Fig. 1 Hemispherical array based photoacoustic computed tomography (PACT) system and its repre-
sentative images. (a) Schematic of a spherical-view photoacoustic system. (b) Representative human
breast images from two healthy volunteers (1) and (2). R, right breast and L, left breast. Reproduced with
permission from Refs. 45 and 46.
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bandwidth.61 To improve the cross-sectional imaging ability,
each element is cylindrically focused to reject out-of-plane sig-
nals. The combined foci from all elements provide a central im-
aging region with a ∼20 mm diameter and ∼1-mm thickness.
Strictly speaking, such a system is a circular-view system, since
only a ring is used to reconstruct the image instead of a cylinder.
However, by taking advantage of its cylindrical focusing
capability, high-quality two-dimensional (2-D) cross-sectional
images are attainable. In addition, by scanning the sample or
the array along the elevational direction, 3-D images can be
acquired. Within the imaging region, the system provides
100- to 250-μm transverse resolution in the circumferential

direction and 100-μm axial resolution in the radial direction.
Limited by its 64-channel data acquisition and 10-Hz laser,
the system acquires one frame∕1.25 s. However, by employing
a 512-channel real-time data acquisition system and a faster
laser, higher rate imaging can be realized. Because of the
fixed ring diameter, only 1-cm penetration depth was reported.
As shown in Figs. 2(b) and 2(c), blood-rich organs, such as the
liver, kidneys, spleen, spine, and GI tracts can be clearly visu-
alized. In addition, blood-poor organs, such as the bladder, can
also be imaged with the help of a near-infrared contrast agent
(IRDye800, LI-COR, Inc.), as shown in Fig. 2(d).

There are different implementations for planar-view PACT,
using either a 2-D ultrasound transducer array44,53 or a
Fabry–Perot interferometer (FPI).55,60 Generally, the 2-D trans-
ducer array based PACT system has a higher frame rate, while
the FPI-based system has higher sensitivity and a larger receiv-
ing angle. Figure 3(a) is a schematic of the FPI-based PACT
system.62 In this type of PA imaging, the deformation of pres-
sure-sensitive materials (e.g., polymer) is measured by optical
resonance. The PA excitation beam was at 640 nm, and the
PA probing beam was at 1550 nm. By raster scanning the
probe beam across the FPI surface, photoacoustic waves can
be mapped in 2-D. Depending on the detector bandwidth
(22 MHz in this work), the axial resolution of this system
was 27 μm. The lateral resolution was about 120 μm, which
was determined by primarily the detection bandwidth and angu-
lar range. To scan an area of 16 × 16 mm2, the image acquisition
time was about 8 min, which was limited by the 50-Hz pulse
repetition rate of the excitation laser. The in vivo penetration
depth of this system was demonstrated to be more than 10 mm.
As shown in Fig. 3(b), two embryos (shaded in red) with
detailed structures, such as the liver, ribs, pulmonary vein,
and right atrium, can be clearly imaged.

4.2 Photoacoustic Microscopy

As mentioned earlier, there are two types of PAM: OR-PAM and
AR-PAM. In OR-PAM, although the optical focus determines its
lateral resolution, the detection transducer is also placed confo-
cally with the optical focus to maximize the system’s detection
sensitivity. Similarly, in AR-PAM, the excitation beam fills the
entire acoustic focus to maximize the system’s sensitivity. The
axial resolution in both OR-PAM and AR-PAM is determined

Fig. 2 Cylindrical-view PACT system and its representative images.
(a) Schematic of the system, showing the confocal design of both the
optics and acoustics. (b)–(d) In vivo images of athymic mice acquired
by the system at different anatomical locations: (b) liver, (c) kidneys,
and (d) bladder. BL, bladder; BM, backbone muscle; GI, GI tract;
KN, kidney; LV, liver; PV, portal vein; SC, spinal cord; SP, spleen; and
VC, vena cava. Reproduced with permission from Ref. 48.

Fig. 3 Fabry–Perot interferometer (FBI) based PACT system. (a) Schematic and (b) a representative
image of a FBI based PACT system. The red parts in (b) indicate the location of embryos.
Reproduced with permission from Ref. 62.
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by the detection bandwidth of the transducer. Due to the fre-
quency dependence of acoustic attenuation, the bandwidth is
chosen according to the desired imaging depth.

As shown in Fig. 4(a), a typical OR-PAM system employs an
optical lens to focus light into the sample. A light-sound com-
biner transmits the light and reflects the sound. The combiner is
composed of a right-angled prism, a thin layer of silicone oil,
and a rhomboid prism for acoustic-optical coaxial alignment.
Usually the laser beam is tightly focused, whose diameter
can range from several hundred nanometers to several microm-
eters, depending on the numerical aperture (NA) of the optical
focusing lens, the wavelength of the excitation beam, and the
desired imaging depth. Relying on the tight optical focus, the
penetration of an OR-PAM system is limited to about one trans-
port mean free path in tissue (∼1 mm).12,63,64 However, by using
longer wavelength laser pulses, which have longer transport
mean free paths, the penetration limit can be increased.65

OR-PAM can image vasculature in a mouse ear,31 eye,66–69 and
brain31,70,71 clearly. Figure 4(b) shows a representative mouse
ear image acquired with OR-PAM, where both a capillary bed
and flowing red blood cells can be clearly visualized.

As shown in Fig. 5(a), in a typical AR-PAM system, the laser
beam passes through a conical lens to form a ring-shaped illu-
mination pattern.34,72,73–75 The beam is then focused into the
target by custom-made mirrors. The optical illumination on the
skin surface has a donut shape with a dark center to minimize
strong surface signals. Since acoustic scattering is much weaker
than optical scattering in tissue, tight acoustic focusing can be
maintained at depths. For example, using a 50-MHz center fre-
quency transducer with an NA of 0.44, a lateral resolution of
∼45 μm was achieved with an imaging depth of more than
3 mm. By choosing transducers with different center frequencies
and NAs, the lateral resolutions can be scaled. Note that

although acoustic scattering is weak in tissue, high frequency
ultrasound signals suffer strong attenuation. In the end, the
attenuation becomes the limiting factor for deep high-resolution
AR-PAM imaging. Figure 5(b) shows a representative AR-PAM
image of a human forearm, where detailed vasculatures can be

Fig. 4 Typical optical resolution photoacoustic microscopy (OR-PAM) system. (a) Schematic and
(b) a representative image of OR-PAM. BS, beam splitter; ConL, condenser lens; CorL, correction
lens; FC, fiber collimator; HbT, total hemoglobin concentration; ND, neutral density; PD, photodiode;
RAP, right-angle prism; RBC, red blood cell; RhP, rhomboid prism; SMF, single-mode fiber; SO, silicone
oil; and US, ultrasonic transducer. Reproduced with permission from Ref. 31.

Fig. 5 Typical acoustic resolution photoacoustic microscopy (AR-
PAM) system. (a) Schematic and (b) a representative image of
AR-PAM. AL, acoustic lens; CL, conical lens; FC, fiber coupler; M,
mirror; MMF, multimode fiber; PD, photodiode; and UT, ultrasonic
transducer. (c) Red box is the image area. Reproduced with permis-
sion from Ref. 74.
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clearly discerned. Figure 5(c) is a photo of the forearm, where
the red box indicates the image area of 8 mm × 8 mm.

The lateral and axial resolutions as well as imaging depth are
summarized in Table 1.

5 Photoacoustic Contrast Agents
Theoretically speaking, any material with sufficiently high opti-
cal absorption can be detected by PAT. Thus, by choosing the
right wavelengths, PAT potentially can be used to image all
materials. Specifically, in biological applications, absorbers are
usually divided into endogenous and exogenous categories. We
will discuss these two categories in Secs. 5.1 and 5.2.

5.1 Endogenous Contrast Agents

The primary advantage of endogenous contrast agents is that
they allow label-free imaging, so they do not affect the original
biological environment. In biological tissue, there are varieties
of optical absorbers,14 such as DNA/RNA,79,80 cytochromes,81

bilirubin,82 myoglobin,83,84 hemoglobin,85,86 methemoglobin,87

carboxyhemoglobin,88 melanin,54,89,90 lipid,91–93 water,94,95

and glucose.96,97 Among all these agents, DNA/RNA is com-
monly used for cell nuclear imaging in the ultraviolet region
[Fig. 6(a)],79 hemoglobin is widely used for vascular imaging in
the visible and the near-infrared spectral regions [Fig. 6(b)],19

and melanin is employed for melanoma tumor imaging in
the near-infrared region [Fig. 6(c)].54 In addition, in the near-
infrared region, lipids and water are used for atherosclerotic
plaque98,99 and injury94 imaging, respectively. As shown in
Fig. 7, different endogenous contrast agents have different
absorption spectra. Thus, PAT can separate them with spectral
measurement, when the local optical fluence is known.

A representative application of spectral decomposition is to
quantify the oxygen saturation of hemoglobin (sO2) in blood
vessels by differentiating signals from oxy-hemoglobin (HbO2)
and deoxy-hemoglobin (HbR). As derived above, the measured
PA amplitude of blood is proportional to the local fluence and
the absorption coefficient of blood

EQ-TARGET;temp:intralink-;e017;326;505pðλ1Þ ¼ kμaðλ1ÞFðλ1Þ
¼ k½εHbRðλ1ÞCHbR þ εHbO2

ðλ1ÞCHbO2
�Fðλ1Þ; (17)

where pðλ1Þ is the measured PA amplitude at wavelength λ1, k is
a system constant, μa is the blood absorption coefficient, F is the
optical fluence. εHbR and εHbO2

are the molar extinction coeffi-
cients of HbR and HbO2, respectively, and CHbR and CHbO2

are
the concentrations of HbR and HbO2, respectively. For a given
system, k is a constant. In OR-PAM, which works within the
optical ballistic regime, F can be corrected for by measuring
the surface optical fluence. Thus, by performing measurements
at two wavelengths, the relative concentrations of HbR and
HbO2 can be quantified

EQ-TARGET;temp:intralink-;e018;326;353CHbR ¼ k
pðλ1ÞεHbRðλ2Þ − pðλ2ÞεHbRðλ1Þ

εHbRðλ1ÞεHbO2
ðλ2Þ − εHbRðλ2ÞεHbO2

ðλ1Þ
; (18)

Table 1 Summary of typical PA system characteristics.

Modality

Lateral
resolution

(μm)

Axial
resolution

(μm)

Imaging
depth
(mm)

Subwavelength OR-PAM76 0.22 15 0.1a

Second generation OR-PAM31 2.5 15 1.2a

Dark-field AR-PAM34 45 15 3a

Bright-field AR-PAM77 44 15 4.8a

Spherical-view PACT46 420 420 53b

Cylindrical-view PACT48 100–250 100 10a

FPI PACT62 120 27 10a

Clinical linear array PACT11,78 720 640 70b

Note: FPI: Fabry–Perot interferometer.
aBased on in vivo data.
bBased on phantom data.

Fig. 6 PAT imaging of endogenous contrast agents: DNA/RNA (a),
hemoglobin (b), and melanin (c). Reproduced with permission from
Ref. 14.

Fig. 7 Absorption spectra of the main endogenous pigments in
tissue at normal concentrations. HbO2, oxygenated hemoglobin;
HbR, deoxygenated hemoglobin; MbO2, oxygenated myoglobin; and
MbR, deoxygenated myoglobin. Reproduced with permission from
Refs. 79, 19, and 54.
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and

EQ-TARGET;temp:intralink-;e019;63;741CHbO2
¼ k

pðλ1ÞεHbRðλ2Þ − pðλ2ÞεHbRðλ1Þ
εHbRðλ2ÞεHbO2

ðλ1Þ − εHbRðλ1ÞεHbO2
ðλ2Þ

; (19)

where λ2 stands for the second wavelength. By definition, the
sO2 value can be calculated as
EQ-TARGET;temp:intralink-;e020;63;679

sO2¼
CHbO2

CHbO2
þCHbR

¼ pðλ1ÞεHbRðλ2Þ−pðλ2ÞεHbRðλ1Þ
pðλ1Þ½εHbRðλ2Þ−εHbO2

ðλ2Þ�−pðλ2Þ½εHbRðλ1Þ−εHbO2
ðλ1Þ�

:

(20)

However, in AR-PAM and PACT, which work in the optical
(quasi)diffusive regime, it is challenging to correct for F. So
far, several methods have been proposed to address this issue
and achieve more accurate sO2 measurement in the optical
(quasi)diffusive regime,100–103 such as directly fitting the tempo-
ral profiles of PA signals,100,103 analyzing their acoustic spec-
tra,101 and measuring their dynamics.102

5.2 Exogenous Contrast Agents

Compared with endogenous contrast agents, exogenous ones
can be engineered to absorb at specific wavelengths to maximize
their detection sensitivities. In addition, exogenous agents
can be made to bind to only certain molecules; thus, these mol-
ecules can be selectively imaged by PAT. So far, a variety of
exogenous agents have been developed,9,104,105 including nano-
particles,106–109 organic dyes,110–115 and proteins.116,117 Recently,
for PA imaging, agents with specially designed functions have
been developed, such as photosensitizing,118,119 activatable,120

and switchable agents.121–123 Note that since hemoglobin and
water have strong absorption in the visible and midinfrared
regions, respectively, most of these exogenous agents are
designed to work in the near-infrared window, i.e., from 700
to 1350 nm. Usually, to enable more accurate spectral decom-
position, two or more wavelengths are chosen to image blood
and exogenous contrasts separately. Figure 8 shows two
examples of using exogenous contrast agents in PA imaging:
methylene blue115 and gold nanoparticles.108 Before the con-
trasts were injected, only blood vessels could be detected, as
shown in Figs. 8(a) and 8(c). However, after injecting the con-
trasts, a sentinel lymph node and tumor appeared with high
contrast, as seen in Figs. 8(b) and 8(d), respectively.

6 Recent Applications
With its multiparameter and multiscale imaging capability,
PAT has been applied in many different disciplines, including
cardiology,77,124,125 dermatology,126–129 oncology,130–133 ophthal-
mology,67,69,134–136 gastroenterology,36–38,40,137–140 hematol-
ogy,141–143 and neurology.144–147 In terms of imaging locations,
PAT can be used for human breast imaging148–150 and small-
animal imaging of the brain,70,151,152 ear,153–155 eye,134–136

liver,15 intestine,156 and skin.54,90 In terms of functionality, PAT
has been widely used for anatomical,157,158 functional,159–161

molecular,9,82 and metabolic imaging.162,163 As for object size,
PAT can detect objects ranging from organelles to human organs
or whole-body small animals.11 PAT has been used for both
small animal imaging (such as zebrafish,164 mice,165 rats,151

and rabbits166) and human imaging.72 In this review paper, rather
than cover details of all the applications, we will simply list the
most recent advances and significant applications of PAT.

6.1 High Speed Imaging of Mouse Brain Functions

PAT has been extensively applied for brain studies. Wang et al.47

reported the first in vivo mouse brain function study with PAT.
Using a circular-view PACT system, they imaged rat brain
responses to vibrational stimulations to whiskers. Because a sin-
gle-element ultrasonic transducer with a center frequency of
3.5 MHz was used, both the frame rate and spatial resolution
were limited. With newer techniques, both the frame rate
and spatial resolution have been significantly improved. For
example, using an ultrasonic transducer array with 512 ele-
ments, mouse brain imaging at one frame per 1.25 s has been
achieved.48 Using OR-PAM, optical resolution mouse brain
images, i.e., at micrometer or submicrometer level resolution,
were obtained.167

Recently, Yao et al.70 reported fast functional PAM (ffPAM)
for mouse brain function imaging in action. Working as OR-
PAM, this system has a lateral resolution of ∼3 μm and an
axial resolution of ∼15 μm. Using a water-immersed microelec-
tromechanical system (MEMS) scanning mirror along with a
500 kHz repetition rate laser, ffPAM has a 2-D frame rate of
400 Hz over a 3-mm scanning range. With a 3 × 2 mm2 field
of view, a 3-D volumetric rate of 1 Hz can be achieved. By
using a single-wavelength pulse-width-based method (PW-sO2),
ffPAM can perform high speed imaging of sO2 up to a 1-D rate
of 100 kHz. As shown in Fig. 9(a), to implement the PW-sO2

method, lasers with different pulse widths are used, i.e., 3 ps and
3 ns. Figure 9(b) shows a representative PA image of the mouse
brain with the skull intact, where the cortex vasculature can be
visualized in detail. With the PW-sO2 method, only 40 s were
required to acquire the sO2 map shown in Fig. 9(c).

Fig. 8 PAT imaging aided by exogenous contrast agents. PA images
acquired before (a) and ∼52 min after (b) methylene blue injection,
showing a dramatic PA signal increase in a sentinel lymph node
(SLN). PA images acquired (c) before and (d) 6 h after gold nanopar-
ticle injection, showing a significant PA signal increase in a melanoma
tumor. Reproduced with permission from Refs. 115 (a) and (b) and
108 (c) and (d).
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To further demonstrate the fast functional imaging capability,
the authors studied mouse cortical responses to electrical
stimulations of the hindlimbs. As shown in Fig. 10(a), upon
stimulations, PA signals in the corresponding regions
increased. In addition, sO2 levels increased in veins and
deep capillary beds upon stimulation, as shown in Fig. 10(b).
However, there was no arterial sO2 response, which is
consistent with the fact that arterial blood had not reached

the capillaries for oxygen exchange and thus maintained
a high oxygenation level.

6.2 Sentinel Lymph Node Biopsy Guidance in
Patients with Breast Cancer

Sentinel lymph node (SLN) biopsy is a standard of care in diag-
nosing cancer, including breast and melanoma cancers. Because

Fig. 9 Fast functional PAM (ffPAM) of the mouse brain. (a) Schematic of the ffPAM system. MEMS,
microelectromechanical system; OAC, optical-acoustic combiner; PBS, polarizing beam splitter; and
UT, ultrasonic transducer. Anatomical (b) and (c) functional images of the mouse brain. sO2, oxygen
saturation of hemoglobin; and SV, skull vessel. Reproduced with permission from Ref. 70.

Fig. 10 ffPAM of brain responses to electrical stimulations of the hindlimbs of mice. (a) Fractional PA
amplitude changes during left hindlimb stimulation (LHS) and right hindlimb stimulation (RHS). (b) sO2
imaging (marked by the dashed box) before and during stimulations of the left hindlimb. Reproduced with
permission from Ref. 70.
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the SLN is the first node in the lymphatic system that drains
a tumor site, metastasis can be diagnosed by SLN biopsy. A
positive biopsy result suggests that cancer has spread to the
node and probably to distant organs. Recently, a handheld
dual-modality ultrasound (US) and PAT system was used to
accurately identify an SLN and thus to precisely guide SLN
biopsy.168

The dual-modality system was modified from a clinical US
scanner (iU22, Philips Healthcare). To highlight SLNs in
patients, a very common clinical contrast agent, methylene
blue, was used. As shown in Fig. 11, laser pulses at two wave-
lengths of 665 and 1064 nm spectrally differentiated methylene
blue from other major absorbers, such as blood. The pulse width
was around 6.5 ns, and the pulse repetition rate was 10 Hz. With
a custom-built data acquisition computer, this system could
achieve a frame rate of 5 Hz for coregistered US and PA imag-
ing. To improve the detection sensitivity and operation conven-
ience, the light delivery fiber bundles and ultrasonic transducer
array were integrated into a single probe, as shown in Fig. 11.
Because the probe is handheld, it is convenient for physicians to
operate for SLN biopsy guidance.

As shown in Fig. 12, by combining both US and PA, the SLN
in a patient with breast cancer can be clearly detected. In addi-
tion, taking advantage of its high frame rate, this system can
provide guidance for fine needle aspiration biopsy (FNAB) with
minimal invasiveness. Because both the SLN and the needle
can be imaged with high contrast, FNAB can be performed
with high accuracy.

6.3 Multiscale Photoacoustic Tomography with
Photo-Switchable Protein Contrast

A reversibly switchable bacterial phytochrome,
Rhodopseudomonas palustris (BphP1), has been recently com-
bined with PAT for deep molecular imaging with improved
detection sensitivity and spatial resolution.121 BphP1 has two
states: Pfr and Pr. Upon 730- to 790-nm light illumination, it
undergoes a Pfr→Pr photoconversion; while upon 630- to
690-nm light illumination, Pr→Pfr photoconversion happens.
For simplicity, the Pfr state of BphP1 was denoted as the ON
state and the Pr state as the OFF state. In the reported work,
780 nm light was used for Pfr→Pr photoconversion, and
630-nm light was used for Pr→Pfr photoconversion. Because
the background absorbers, primarily blood, did not have the
same switchable properties as BphP1, taking differential images
largely suppressed the background signals and thus increased
the detection sensitivity for BphP1-expressing tumors in deep
tissue.

First implementing BphP1 with a circular-view PACT sys-
tem, the authors observed a noise-equivalent detection sensitiv-
ity of ∼20 U87 human glioblastoma cells expressing BphP1, as
shown in Fig. 13(a). With the single-wavelength differential
method, the CNR was about 34-fold higher than the two-wave-
length spectral unmixing method. In the in vivo experiment, a
mouse was imaged 1 week after injection of BphP1-expressing
U87 cells into its left kidney. As shown in Fig. 13(b), although
major organs, such as the skin, kidneys, spleen, and bladder, can
all be clearly imaged, the tumor in the left kidney could not be
detected because of the overwhelming blood signals. However,
after 20 cycles of photoswitching, the differential image showed
the tumor at depths up to 8 mm with high contrast, as seen in
Figs. 13(b) and 13(c). The line profiles in Fig. 13(b) show
that while the background blood signals remained unchanged,
the photoswitchable tumor had clearly different signals in the
ON- and OFF-state images [Fig. 13(d)]. A histological exami-
nation taken after PA imaging confirmed the tumor, as shown in
Fig. 13(e). Another tumor detection experiment, in a mouse
brain, also showed the superior sensitivity of the BphP1-
enhanced PACT system, as shown in Fig. 13(f).

Combined with a high NA (1.4 in this work) OR-PAM sys-
tem [Fig. 14(a)], this reversely switchable protein can also be
used for super-resolution PA imaging (RS-SPAM). As shown
in Fig. 14(b), because the switching-off rate is proportional
to the local excitation intensity, PA signals from the center of
the excitation spot will decay faster than those from the periph-
ery. By fitting the nonlinear signal-decay process, a high-order
coefficient can be extracted and thus subdiffraction resolution

Fig. 11 Schematic of the dual-modality ultrasound and photoacoustic
system for SLN detection. Reproduced with permission from Ref. 168.

Fig. 12 In vivo images of a human axilla acquired by US (a), PA (b), and both (c). Reproduced with
permission from Ref. 168.
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can be achieved. As shown in Figs. 14(c)–14(g), RS-SPAM
showed much finer lateral and axial resolutions. The lateral res-
olution was quantified to be ∼141 nm, which is about twofold
better than that of conventional PAM, and the axial resolution
was around 400 nm in RS-SPAM, which was around 75 times
better than that of conventional PAM.

7 Summary
In summary, PAT is a highly scalable imaging modality with
major implementations of PAM and PACT. In PAM, light is
focused into the target and a focused transducer is typically
used for the signal detection. Thus, its lateral resolution is deter-
mined by either the optical focus (OR-PAM) or acoustic focus
(AR-PAM), depending on which one is tighter. In OR-PAM, the
lateral resolution is given by 0.51 λo∕NAo, where λo is the light
wavelength, and NAo is the NA of the optical focusing lens. In
AR-PAM, the lateral resolution is given by 0.72 λa∕NAa, where
λa is the central acoustic wavelength of the ultrasonic transducer,
and NAa is the NA of the acoustic lens. The difference in the
scaling factors arises because optical excitation is based on light
intensity, while ultrasonic detection is based on acoustic ampli-
tude. In both cases, the axial resolution is given by 0.88 c∕Δf,
where c is the speed of sound in soft tissue, and Δf is the band-
width of the ultrasonic transducer. This axial resolution formula
also applies to PACT systems. However, unlike PAM, lateral

resolutions in PACT are usually not a constant. Thus, we can
see that by choosing different optical focusing lenses or ultra-
sonic transducers, both lateral and axial resolution can be
changed. Super optical resolution has been achieved in OR-
PAM.169 In addition, because acoustic attenuation in tissues
increases with the acoustic frequency, ultrasonic transducers
with different center frequencies should be chosen according
to the desired imaging penetration limit. The maximum penetra-
tion achieved in PA images is ∼7 cm with a lateral resolution
about 720 μm.11

PAT is also a multiparameter imaging modality. In most of
the cases, because hemoglobin provides the highest contrast in
biological imaging, most studies focus on extracting and study-
ing blood-related parameters, such as blood vessel diameter,31

blood flow speed,170,171 hemoglobin oxygen concentration,19,31

blood pulse wave velocity,172 and the metabolic rate of
oxygen.162 PAT has provided valuable information for studying
vasculature-related diseases, such as stroke,173 diabetes,174 and
atherosclerosis.98,175,176 In addition, because neural activities are
closely related to hemodynamics, measuring these hemo-
dynamic parameters is also useful for neurological studies,
such as studies on epilepsy,177 resting state functional connec-
tivity,152 and stimulation responses.147 Because of its high con-
trast in comparison to other absorbers, such as melanin54 and
DNA/RNA,79 PAT can also image other important biological

Fig. 13 Circular-view PACT system combined with reversely switchable BphP1 for deep imaging.
(a) Contrast-to-noise ratio (CNR) of U87 cells imaged by PACT at 10-mm depth. (b) Whole-body
mouse images acquired with BphP1 at different state. The differential image clearly shows that the
tumor is at the left kidney. (c) An overlay of the differential image (in color) and the blood-dominated
OFF-state image (in grayscale). (d) Normalized PA amplitude along the dashed line in (b), showing
the contrast enhancement of the tumor in the differential image. (e) A histology image of the left kidney
showing the tumor region. (f) PACT image of a mouse brain with a U87 tumor expressing BphP1. The
tumor was ∼3 mm beneath the scalp. Reproduced with permission from Ref. 121.
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parameters. Imaging melanin can provide the depth of mela-
noma, as well as its rate of growth and metastatic rate,54 which
are all very important parameters in diagnosing and treating
melanoma patients. Imaging DNA/RNA provides a tool for
label-free measurement of cell nuclear density, which poten-
tially can be used for tumor demarcation.

PAT has become one of the fastest growing fields in biomedi-
cal imaging. So far, PAT has translated several important appli-
cations into clinics, which may help solve existing problems in
health care. For example, noninvasive detection of SLNs168 in
patients can potentially provide minimally invasive cancer stag-
ing, and quantification of melanoma depth54 can potentially guide
more accurate surgeries, both reducing morbidity and costs. With
advances in new techniques, we anticipate that PAT will provide
valuable information for disease diagnosis as well as treatment.
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