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Abstract

Photoacoustic computed tomography (PACT) is a rapidly emerging bioimaging modality that 

seeks to reconstruct an estimate of the absorbed optical energy density within an object. 

Conventional PACT image reconstruction methods assume a constant speed-of-sound (SOS), 

which can result in image artifacts when acoustic aberrations are significant. It has been 

demonstrated that incorporating knowledge of an object’s SOS distribution into a PACT image 

reconstruction method can improve image quality. However, in many cases, the SOS distribution 

cannot be accurately and/or conveniently estimated prior to the PACT experiment. Because 

variations in the SOS distribution induce aberrations in the measured photoacoustic wavefields, 

certain information regarding an object’s SOS distribution is encoded in the PACT measurement 

data. Based on this observation, a joint reconstruction (JR) problem has been proposed in which 

the SOS distribution is concurrently estimated along with the sought-after absorbed optical energy 

density from the photoacoustic measurement data. A broad understanding of the extent to which 

the JR problem can be accurately and reliably solved has not been reported. In this work, a series 

of numerical experiments is described that elucidate some important properties of the JR problem 

that pertain to its practical feasibility. To accomplish this, an optimization-based formulation of the 

JR problem is developed that yields a non-linear iterative algorithm that alternatively updates the 

two image estimates. Heuristic analytic insights into the reconstruction problem are also provided. 

These results confirm the ill-conditioned nature of the joint reconstruction problem that will 

present significant challenges for practical applications.

Index Terms

Photoacoustic computed tomography; optoacoustic tomography; ultrasound tomography; image 
reconstruction

I. Introduction

Photoacoustic computed tomography (PACT), also known as optoacoustic or thermoacoustic 

tomography, is a rapidly emerging hybrid imaging modality that combines optical image 

contrast with ultrasound detection [1]–[3]. In PACT, the to-be-imaged object is illuminated 

with a short laser pulse that results in the generation of internal acoustic wavefields via the 

photoacoustic effect. The initial amplitudes of the induced acoustic wavefields are 
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proportional to the spatially variant absorbed optical energy density distribution within the 

object, which will be denoted by the object function A(r). The acoustic waves propagate out 

of the object and are subsequently measured by use of wide-band ultrasonic transducers. The 

goal of image reconstruction in PACT is to estimate the object function A(r) from these 

measurements.

Image reconstruction methods for PACT are often based on idealized imaging models that 

assume an acoustically homogeneous medium [4]–[8]. However, these assumptions are not 

warranted in certain biomedical applications of PACT [9]. Numerous image reconstruction 

methods have been proposed [10]–[17] that compensate for aberrations of the measured 

photoacoustic (PA) wavefields caused by an object’s speed-of-sound (SOS) variations, c(r), 

and hence improve PACT image quality. It has been demonstrated that these methods can 

improve the fidelity of reconstructed images by incorporating accurate knowledge of the 

SOS variations in the PACT imaging model. However, accurate estimation of c(r) prior to 

the PACT study generally requires solution of an ultrasound computed tomography (USCT) 

inverse problem, which can present experimental and computational challenges [18]–[20].

An important observation is that, because variations in the SOS distribution induce the PA 

wavefield aberrations, certain information regarding an object’s SOS distribution is encoded 

in the PACT measurement data. Based on this observation, it is natural to question whether 

A(r) and c(r) can both be accurately determined from only the PACT measurement data. 
[21]–[25], thereby circumventing the need to perform a dedicated USCT study. This will be 

referred to as the joint reconstruction (JR) problem and is the subject of this article.

Theoretical and computational studies of the JR problem have been conducted but all are 

limited in scope. Theoretical work on the JR problem that neglects discrete sampling effects 

has established that A(r) and c(r) can be uniquely determined from the measured PACT data 

only under certain restrictive assumptions regarding the forms of A(r) and c(r) [14], [26] or 

the measurement surface [27]. However, the uniqueness of the JR problem for the general 

case has not been established. Another study established that the solution of the linearized 

JR problem is unstable [28] and suggested that the same conclusion would hold for the 

general case where wavefield propagation modeling is based on the full wave equation.

Despite the lack of theoretical works, others have moved forward and developed 

computational methods for solving the JR problem by use of discretely sampled 

measurement data [21]–[23]. In [21], an iterative reconstruction method was proposed to 

jointly estimate both A(r) and c(r). That study employed a geometrical acoustics 

propagation model and assumed a priori information regarding the singular support of c(r). 

In [22], [23], a JR method based on the Helmholtz equation was proposed that was solved by 

the finite element method (FEM). While this method is grounded in an accurate model of the 

imaging physics, it suffers from an intensive computational burden. A similar JR approach 

was proposed [24] that employed a time-reversal (TR) adjoint method. All of these works 

are preliminary in the sense that they did not systematically explore the numerical properties 

of the JR problem or provide broad insights that allow one to predict when accurate JR may 

be possible. In combination with the scarcity of theoretical works, this indicates an 

important need to further elucidate the practical feasibility of JR.
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To address this, the primary objective of this work is to investigate the numerical properties 

of the JR problem, which will provide important insights into its practical feasibility. A 

novel JR method is developed for this purpose. The developed reconstruction method is 

based on an alternating optimization scheme, where A(r) is reconstructed by use of a 

previously-developed full-wave iterative method [16], while c(r) is reconstructed by use of a 

nonlinear optimization algorithm based on the Fréchet derivative of an objective function 

with respect to c(r) [29], [30]. Computer-simulation studies are conducted to investigate the 

topology of the cost function defined in the optimization-based approach to JR. Additionally, 

numerical experiments are conducted that reveal how the supports and relative smoothness 

of A(r) and c(r) affect the numerical stability of the JR problem. Demonstrations of how 

errors in the imaging model associated with imperfect transducer modeling and acoustic 

attenuation affect JR accuracy are also provided.

The paper is organized as follows. In Section II, the imaging physics of PACT in 

acoustically heterogeneous media is reviewed briefly. The description of the Fréchet 

derivative with respect to c(r) of a pertinent objective function is also provided. Section III 

describes the alternating optimization approach for solving the JR problem. In Sec. IV, 

heuristic insights into how the relative extents of the spatial supports of A(r) and c(r) can 

affect the ability to perform accurate JR are provided. The computer-simulation 

methodology and numerical studies are given in Secs. V and VI. The paper concludes with a 

summary and discussion in Section VII.

II. Background

A. Photoacoustic wavefield propagation in heterogeneous media

We consider PA wavefield propagation in lossless fluid media having a constant mass 

density. Let p(r, t) denote the photoacoustically-induced pressure wavefield at location r ∈ 
ℝ3 and time t ≥ 0. The photoacoustic wavefield p(r, t) satisfies [1]:

(1)

subject to initial conditions

(2)

where Γ(r) is the Grueneisen parameter that is assumed to be known.

B. Fréchet derivative with respect to c(r)

The problem of reconstructing c(r) from PA data for a fixed A(r), defined as Sub-Problem 

#2 below, can be formulated as an optimization problem in which the following objective 

functional is minimized with respect to c(r):

Huang et al. Page 3

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2017 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

subject to the constraint that p(rm, t) satisfies Eqs. (1) and (2), where T denotes the 

maximum time at which the PA data were recorded. The quantity p̂(rm, t) represents the PA 

data recorded by the m-th transducer at location rm (m = 1, ···, M). For ease of description, 

we represent the measured PA data as continuous functions of t, but the results below will be 

discretized for numerical implementation as described in Section III. Here, for simplicity, we 

neglect the acousto-electrical impulse response (EIR) and the spatial impulse response (SIR) 

of the ultrasonic transducers employed to record the PA signals. However, the impact of 

these will be addressed in Section VI-D.

Gradient-based algorithms can be utilized to minimize the nonlinear functional (3). Such 

methods require the functional gradient, or Fréchet derivative, of ℰ with respect to c(r), 

which can be calculated by use of an adjoint method [29], [30]. In the adjoint method, the 

adjoint wave equation is defined as

(4)

subject to terminal conditions

(5)

The source term s(r, t) is defined as

(6)

Upon solving (1) and (4), the Fréchet derivative of ℰ with respect to c(r) can be determined 

as [29], [30],

(7)
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Once the Fréchet derivative is obtained, it can be utilized by any gradient-based method as 

the search direction to iteratively reduce the functional value of (3). The computation of this 

Fréchet derivative from discrete measurements is described in the Appendix.

III. Joint Reconstruction of A(r) and c(r)

In this section, a JR method for concurrently estimating A(r) and c(r) is formulated based on 

an alternating optimization strategy.

A. Discrete imaging model

Let the N × 1 vectors

(8)

and

(9)

denote the finite-dimensional approximations of A(r) and c(r) formed by sampling the 

functions at the N vertices on a Cartesian grid that correspond to locations rn, n = 1, ···, N. 

As introducted earlier, rk, k = 1, ···, M denote the transducer locations.

The quantity

(10)

represents the measured PA data sampled at time t = lΔt (l = 1, ···, L) at each transducer 

location. Here, Δt is the sampling time step, and L is the total number of time steps. The 

complete set of measured PA data can be represented by the LM × 1 vector

(11)

By use of (8), (9), and (11), a discrete PACT imaging model can be expressed as [16]

(12)

where H(c) is the LM × N system matrix that depends non-linearly on c. A procedure to 

establish an explicit matrix representation of H(c) was provided in [16].
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In conventional applications of PACT, the SOS distribution c is assumed to be known. 

Alternatively, the goal of the JR problem is to concurrently estimate A and c from the 

measured data p̂ by use of the model in Eq. (12).

B. Optimization-based joint image reconstruction

Based on Eq. (12), the JR problem can be formulated as

(13)

where RA(A) and Rc(c) are penalty functions that impose regularity on the estimates of A 
and c, respectively, and λ1, λ2 are the corresponding regularization parameters. As 

discussed in Sec. VI-A, the data fidelity term in (13) is non-convex. However, a heuristic 

alternating optimization approach can be employed to find solutions that approximately 

satisfy (13). This approach consists of the two sub-problems described below: (1) 

reconstruction of A given c, and (2) reconstruction of c given A.

Sub-Problem #1: Reconstruction of A given c—The problem of estimating A for a 

given (i.e., fixed) c can be formulated as the penalized least squares problem

(14)

where λA is the regularization parameter, which is different from λ1 in Eq. (13) in general. 

Reconstruction methods have been proposed for solving problems of this form [16], [31].

Sub-Problem #2: Reconstruction of c given A—For a given A, an estimate of c can 

be formed as

(15)

where λc is the regularization parameter, which is different from λ2 in Eq. (13), in general. 

One can attempt to solve (15) by use of gradient-based methods, which require computation 

of the gradient of the objective function in Eq. (15) with respect to c. Details regarding this 

gradient computation are provided in Sec. II-B and the Appendix.

Algorithm 1

Alternating optimization approach to JR of A and c

Input: p̂, A(0), c(0), εA, εc, λA, λc
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Output: Â, ĉ

1: i = 0

2: while ε1 < εA and ε2 < εc do

3:  A(i+1) ← FA (A(i), c(i), p̂, λA) [Sub-Problem #1]

4:  c(i+1) ← Fc (c(i), A(i+1), p̂, λc) [Sub-Problem #2]

5:  ε1 ← Dist(A(i), A(i+1))

6:  ε2 ← Dist(c(i), c(i+1))

7:  i ← i + 1

8: end while

9: Â ← A(i)

10: ĉ ← c(i)

Alternating optimization algorithm: As described in Algorithm 1, JR of A and c can be 

accomplished by alternately estimating the solutions of Sub-Problems #1 and #2. The 

quantities A(0) and c(0) are the initial estimates of A and c, respectively, and εA and εc are 

convergence tolerances. The functions ‘FA’ and ‘Fc’ compute the solutions of Eqs. (14) and 

(15), respectively, and are described below in Section V. The function ‘Dist’ measures the 

Euclidean distance between A(i) and A(i+1) (or between c(i) and c(i+1)).

IV. Heuristic insights into support conjecture and Sub-problem #2

As revealed throughout this work, difficulities in solving Sub-Problem #2 represents a 

significant challenge for JR. In this section, heuristic insights into how the relative extents of 

the spatial supports of A(r) and c(r) can affect the ability to accurately solve Sub-Problem 

#2, and hence the JR problem, are provided.

The supports of the functions A(r) and c(r) will be denoted as supp(A) and supp(c), 

respectively. The supports are defined to be the regions where A(r) ≠ 0 and c(r) − c0 ≠ 0, 

respectively. Here c0 is the known SOS in the background (i.e., in the coupling water-bath). 

The functions A(r) and c(r) are assumed to be compactly supported, reflecting the physical 

constraint that their extents are limited and the object of interest resides within the imaging 

system.

The following assumptions will be made in order to permit a simple analysis of the problem 

that yield insights. First, it is assumed that acoustic scattering is weak. More specifically, a 

geometrical acoustics model [10] is employed to describe the propagation of the PA 

wavefields. Amplitude variations are assumed to be negligible and wavefront aberrations are 

modeled by computing the time-of-flight along straight propagation paths. The second 

assumption exploits the fact that an arbitrary function A(r) can be decomposed into a 

collection of point sources. Specifically, it is assumed that the PA signal generated by each 

of these point sources can be recorded independently by transducers. In reality, of course, 

this is not the case. This assumption, in effect, assumes that an ‘oracle’ records the PA 

signals and is able to decompose them into the individual components that were produced by 

each point source. Below, we will describe how the relative extents of supp(A) and supp(c) 
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affect the ability of the oracle to accurately solve Sub-Problem #2. Since the oracle has 

access to more information than is actually recorded in an experiment, inability of the oracle 

to perform accurate image reconstruction implies that accurate image reconstruction by use 

of the actual recorded data will also be unfeasible. This is the logical basis for the analysis 

below. Third, the analysis is presented in 2D but can be extended to the 3D case readily. 

Without loss of generality, the measurement surface is assumed to be a circle with radius R 
that encloses supp(A).

For convenience, we introduce the perturbed slowness distribution . As 

assumed above, the oracle can resolve the PA signal generated by each point source that 

comprises A(r). As such, the time it takes for a PA pulse to propagate from its emission 

location rs ∈ supp(A) to each transducer location rβ ≡ [Rcos(β), R sin(β)]T (β ∈ [−π, π)) is 

also known to the oracle, where the geometry is defined in Fig. 1. From these time-of-flight 

(TOF) data, a tomographic data function can be defined as

(16)

where rβ′ is the transducer location defined by the intersection of the line connecting rβ and 

rs and the measurement circle. The quantity τc0 (rβ, rβ′) denotes the time it takes for a pulse 

to propagate between the two transducer locations when only the background medium is 

present. Since a straight-ray, geometrical acoustics, model is assumed, this data function is 

related to the sought-after slowness distribution as

(17)

where the path of integration is along the line segment L(rβ′, rβ) that connects the two 

transducer locations.

Two cases will be considered that reveal the impact of the relative extents of supp(A) and 

supp(c) on the ability of the oracle to reconstruct s(r), or equivalently, c(r), given A(r). The 

first case corresponds to the situation where supp(c) ⊆ supp(A), as depicted in Fig. 1. In this 

case, for example, supp(A) could correspond to the area occupied by a soft tissue structure 

in which the SOS is approximately the same as the background SOS and supp(c) would 

correspond to a region within the tissue possessing a different SOS. It can be verified readily 

that for every r ∈ supp(c), a collection of rs ∈ supp(A) exists such that values of the data 

function that specify the line integrals along all paths L(rβ′, rβ) that intersect r are 

accessible to the oracle. Stated otherwise, in this case, all projection data that are needed to 

uniquely invert the 2D Radon transform [32] in Eq. (17) are accessible and therefore s(r) or, 

equivalently, c(r) can be exactly determined in a mathematical sense.

In fact, the requirement supp(c) ⊆ supp(A) can be relaxed to supp(c) being enclosed by 

supp(A), as shown in Fig. 2(a). This is because we only require rs ∈ ∂ supp(A), where ∂ 
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supp(A) denotes the boundary of supp(A), to determine the complete set of projection data 

as described above.

The second case corresponds to the situation where supp(c) is not enclosed by supp(A), as 

shown in Fig. 2(b). In this case, it can be verified that the complete data function cannot be 

determined, indicating that the values of all line integrals through s(r) are not accessible as 

depicted in Fig. 2(b). That example is analogous to the interior problem in X-ray CT, which 

possesses no unique solution [32]. This may occur in PACT when partial illumination is 

used [33].

These observations are summarized as follows.

Support conjecture—When geometrical acoustics is valid, Sub-Problem #2 cannot be 

accurately solved when supp(c) is not enclosed by supp(A).

V. Computer-Simulation Studies

A general description of the computer-simulation methodologies is described below. 

Although the optimization approach to JR described above is based on the 3D wave 

equation, 3D JR remains computationally intensive. For computational convenience, the 2D 

formulation is investigated in this work. The specific numerical experiments designed to 

investigate the numerical properties of the JR problem are described subsequently in Sec. 

VI.

A. Simulation of idealized PA measurement data

Numerical phantoms were utilized to represent A(r) and c(r), which were described by Eqs. 

(8) and (9). These phantoms, denoted by A and c, contained 512 × 512 pixels with a pitch of 

0.25 mm. (i.e., N = 5122 in Eqs. (8) and (9).) For a given A and c, the lossless PA wave 

equation was solved by use of the MATLAB k-Wave toolbox [34] to produce simulated PA 

signals at each transducer location. Each PA signal contained 6000 temporal samples 

recorded with a time step Δt = 50 ns. The measurement geometry consisted of 800 

transducers that were evenly distributed on the perimeter of a square with a side length of 

100 mm. The object was contained within this region. Note that, unless stated otherwise, the 

generation of the simulated PA measurement data in this way avoided an ‘inverse crime’, 

due to a different choice of discretization parameters from those employed by the 

reconstruction algorithm as described below.

B. Simulation of non-idealized PA measurement data

To investigate the properties of JR under more realistic conditions, additional PA data sets 

were simulated that considered certain physical factors. Measurement noise was modeled by 

adding 3% (with respect to the maximum value of the noiseless data) white Gaussian noise 

(AWGN) to the simulated PA data. Additional factors considered included acoustic 

attenuation, the effect of the electrical and spatial impulse responses of the transducers. 

Specific details are provided in Sec. VI-D.
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C. Implementation details for image reconstruction

The implementations of the two image reconstruction subproblems in Algorithm 1 are 

described below. The function ‘Fc’ that computes the solution of (15) was implemented 

based on the MATLAB k-Wave toolbox [34]. Specifically, the wave equation (1) and the 

adjoint wave equation (4) were solved numerically by use of the k-space pseudospectral 

method. The computed PA wavefield and the adjoint wavefield were employed to compute 

the gradient of the objective function in (15) (see Appendix). The gradient was subsequently 

utilized by the limited-memory BFGS (L-BFGS) algorithm to estimate the solution of (15) 

[35]–[37]. The implementation of the function ‘FA’ that solves (14) can be found in [16]. In 

this study, a total variation (TV) penalty was adopted. The ‘Dist’ function measured the 

difference in terms of root mean square error (RMSE), and the convergence tolerances εA 

and εc were empirically chosen to have a value of 10−2 throughout the studies. In all studies, 

the initial estimates of A and c were set to be A(0) = 0 and c(0) = 1480 m/s, which is the 

background SOS. Both A and c were reconstructed on a uniform grid of 256 × 256 pixels 

with a pitch of 0.5 mm.

All simulations were computed in the MATLAB environment on a workstation that 

contained dual hexa-core Intel(R) Xeon(R) E5645 CPUs and a NVIDIA Tesla C2075 

graphics processing unit (GPU). The GPU was equipped with 448 1.15 GHz CUDA cores 

and 5 GB global memory. The Jacket toolbox [38] was employed to accelerate the 

computation of (1) and (4) on the GPU.

VI. Numerical investigations and analyses

A. Topology of the JR cost function in Eq. (13)

The effectiveness of the optimization-based approach to JR depends on the topology of the 

cost function that is minimized in Eq. (13). In these studies, only the data fidelity term was 

considered (λ1 = λ2 = 0). If the cost function is not convex or quasi-convex, a global 

minimum (i.e., an accurate JR solution) may not be returned by the optimization algorithm 

when the initial estimate is not close enough to the global minimizer. Moreover, when the 

cost function is not strictly convex, there is no guarantee that the solution is unique. In this 

section, a low-dimensional stylized example is considered to yield insights into the general 

characteristics of the cost function topology.

The numerical phantoms shown in Fig. 3 were employed to represent A and c. To establish a 

low-dimensional representation of these phantoms, a discretization scheme that differed 

from Eqs. (8) and (9) was employed (in this study only). Namely, A was described as A = 

[As, Ab] where As represented the value within the uniform disk and Ab is the known 

(assumed to be zero) background value. Similarly, c was described as c = [cs, cb] where cs 

represented the value of the uniform annulus and cb is the fixed background value outside of 

the annulus. For each (As, cs) pair, simulated PA data were computed. Subsequently, the 

value of ||H(c)A − p̂1,1||2 was computed and plotted as a function of the scale factors of As 

and cs, where p̂1,1 denotes the simulated PA data corresponding to As = cs = 1.

Figure 4(a) displays a surface plot of the data fidelity term ||H(c)A − p̂1,1||2 as a function of 

the scale factors of As and cs, while profiles corresponding to As = 1 are shown in subfigure 

Huang et al. Page 10

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2017 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(b). The results show that the data fidelity term is not convex with respect to cs. These results 

suggest the cost function may also be non-convex with respect to more general and higher-

dimensional SOS distributions c.

To investigate how the spatial structure of A can influence the topology of the cost function, 

the above procedure was repeated when the radius of the disk in A was varied. Profiles of 

the normalized data fidelity term corresponding to As = 1 are displayed in Fig. 5(a). These 

data reveal that the ‘valley’ containing the global minimum of the cost function widens as 

the radius of the disk heterogeneity in A increases. This can be seen more clearly in the plots 

of the width of the valley versus the disk radius that are shown in Fig. 5(b). This observation 

suggests that the quality of the initial estimate for c can be relaxed when the radius of the 

support of A increases.

In summary, these results establish that, for a fixed A, the JR cost function is generally non-

convex with respect to c. Accordingly, Sub-Problem #2 is generally a non-convex problem. 

Sub-Problem #1 is convex, assuming the penalty is convex. The overall non-convexity of the 

JR problem indicates that accurate initial estimates of c will generally be necessary to avoid 

local minima that represent inaccurate solutions. Additionally, the non-convexity of the 

problem suggests that uniqueness of the solution is not guaranteed.

B. Numerical investigations of Sub-Problem #2

As described above, Sub-Problem #2 corresponds to a non-convex optimization problem that 

can be difficult to solve in practice. Accordingly, errors that arise when estimating the 

solution to Sub-Problem #2 can accumulate in Algorithm 1 and hinder the ability to perform 

accurate JR. Below, numerical experiments are reported that reveal insights into some 

mathematical properties of A(r) and c(r) that influence the ability to accurately solve Sub-

Problem #2.

1) Effect of spatial supports of A(r) and c(r)—Studies were conducted to investigate 

the extent to which the support conjecture, provided in Sec. IV, influences the ability to 

accurately solve Sub-Problem #2, and hence perform JR, by use of perfect measurements. 

The numerical phantom employed to represent the the SOS distribution, c, is shown in Fig. 

6. The SOS values were representative of human breast tissues. We first considered two 

choices for A, shown in Figs. 7(a) and 7(d), which were designed to satisfy the support 

conjecture (supp(c) is enclosed by supp(A)). For each choice of A, the SOS distribution c 
was determined as an (approximate) solution of Sub-Problem #2 from noiseless simulated 

PACT measurements. The value of the regularization parameter λc in Eq. (15) was zero. The 

reconstructed estimates of c corresponding to the two choices of A are shown in Figs. 7(b) 

and 7(c). The corresponding profiles extracted from the central rows of the reconstructed 

estimates are displayed in Figs. 7(c) and 7(f), respectively. These results reveal that it is 

possible to reconstruct accurate estimates of c from perfect PACT measurements via Sub-

Problem #2 when the specified A satisfies the support conjecture. The effects of noise and 

other measurement errors are addressed later.

We next considered the four choices for A, shown in the left column of Fig. 8 (Figs. 8(a), 

(d), (g), and (j)), which, roughly speaking, were designed to violate the support conjecture to 
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different extents. As above, corresponding unregularized estimates of c were obtained by 

estimating the solution of Sub- Problem #2 from noiseless simulated PACT measurements. 

The reconstructed estimates of c corresponding to the different choices of A are shown in the 

middle column of Fig. 8. The corresponding profiles extracted from the central rows of the 

reconstructed estimates are displayed in the right column. Figures 8(b) and (e) reveal that, 

despite that the violation of the support conjecture, accurate estimates of c could still be 

reconstructed. Figures 8(h) and (k) demonstrate that the accuracy of the reconstructed 

estimate of c degrades as the size of the support of A(r) is reduced.

In summary, these observations reveal that, in general, the support conjecture does not need 

to be satisified in order to achieve accurate reconstruction of c for an exactly known A and 

perfect measurement data. This may be explained by the fact that the support conjecture was 

established by use of a geometrical acoustics model that is a simplification of the 

complicated process by which acoustic waves propagate in both our simulations or in 

practice. However, in the cases where the support conjecture was satisfied, accurate 

estimates of c were obtained. Moreover, the simulation results indicate that the extent to 

which the supports of A(r) and c(r) overlap does affect the ability to accurately solve Sub-

Problem #2, and hence the JR problem.

2) Effect of relative spatial bandwidths of A(r) and c(r)—In [22], [23], Jiang et al. 
showed that the accuracy of JR was affected by the frequency band of the detected acoustic 

wave, which is partially determined by the spatial bandwidth of A(r). Also, in practice, A(r) 

and c(r) can possess different spatial bandwidths, depending, for example, on the 

collimation of the illuminating optical field. Therefore, in this section studies were 

conducted to investigate the extent to which the relative spatial bandwidths of A(r) and c(r) 

influences the ability to accurately solve Sub-Problem #2 by use of perfect measurements. 

Figure 9 shows the numerical phantoms for A and c. To exclude the effects related to the 

supports of A(r) and c(r), the phantoms were designed to satisfy the support conjecture. The 

spatial structures of the original phantoms in Fig. 9 are identical, indicating that their spatial 

frequency bandwidths are identical. The phantom depicting A was subsequently convolved 

with different Gaussian kernels to generate additional phantoms that possessed different 

spatial frequency bandwidths. The full width at half maximum (FWHM) of the blurring 

kernel was employed as a summary measure of the relative spatial bandwidths of the 

smoothed phantoms. The solution of Sub-Problem #2 was subsequently estimated with λc = 

0 by use of both perfect and noisy simulated measurement data for each of the smoothed 

versions of A.

The reconstructed estimates of c are shown in Fig. 10. From top to bottom, the results 

correspond to relative bandwidth ratios (of A to c) of 0.25, 0.44, and 1.0, respectively. 

Figures 10(a), (e), and (i) correspond to images reconstructed from perfect measurement 

data and the associated image profiles are displayed in Figs. 10(b), (f), and (j). Figures 10(c), 

(g), and (k) correspond to images reconstructed from noisy measurement data and the 

associated image profiles are displayed in Figs. 10(d), (h), and (l). The RMSE of the 

reconstructed c with respect to the relative bandwidth ratio of A to c for both noiseless and 

noisy cases is displayed in Fig. 11.
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These results reveal that the relative spatial frequency bandwidths of A(r) and c(r) affect the 

numerical stability of Sub- Problem #2 and, hence, that of the JR problem. The accuracy of 

the reconstructed c in the presence of measurement noise for a specified A was observed to 

be influenced strongly by the relative spatial bandwidths of A and c. Specifically, in order to 

accurately reconstruct c in the presence of noise, the presented results suggest that the spatial 

frequency bandwidth of A(r) should be comparable to or larger than the spatial frequency 

bandwidth of c(r). We will refer to this as the k-space conjecture hereafter.

3) Effect of perturbations of A(r)—In the studies described above, perfect knowledge of 

A was assumed. Below, a numerical experiment is described that provides insights into how 

small perturbations in the assumed A affects the accuracy of the reconstructed c obtained by 

solving Sub-Problem #2.

Figure 12(a) and (c) display two similar numerical phantoms depicting A. The RMSE 

between these phantoms is 0.004. Simulated ideal PACT measurements were computed 

corresponding to the cases where each of the two A was paired with a distinct SOS 

distribution c. The utilized c are not shown but are nearly identical to the reconstructed 

images shown in Figs. 12(b) and (d). It is important to note that the (A, c) pair in the top row 

of Fig. 12 produces nearly identical PA data, at all transducer locations, to that produced by 

the (A, c) pair in the bottom row. The simulated noiseless pressure data at an arbitrary 

transducer location produced by the two (A, c) pairs is shown in Fig. 13, where the pressure 

signals are observed to overlap almost completely. The RMSE between the two sets of PA 

data was RMSE = 3.2 × 10−4.

Figures 12(b) and (d) display the reconstructed estimates of c when the A specified in Fig. 

12(a) and (c) was assumed, respectively. These results demonstrate that the problem of 

reconstructing c for a given A is ill-conditioned in the sense that small changes in A can 

produce significant changes in the reconstructed estimate of c. This observation is consistent 

with the theoretical results in [28]. These results suggest that the solutions of the JR problem 

in PACT may not be unique. Consequently, it indicates that accurate JR of A and c, in 

general, may not be possible.

C. Feasibility of JR with idealized data

The numerical instability of Sub-Problem #2, as examined in the previous section, implies 

that the solution to the JR problem is also numerically unstable. This was confirmed by 

computing solutions to the JR problem from perfect measurement data. The data were 

perfect in the sense that they did not contain measurement noise. Moreover, an ‘inverse 

crime’ was committed in which the same forward model and discretization parameters (pixel 

size = 0.5 mm) were employed to produce the simulation data and to conduct image 

reconstruction. These data were produced by use of the phantoms shown in Fig. 9, which 

satisfied both the support and the k-space conjectures. Unregularized JR was performed by 

use of Algorithm 1 with λA = λc = 0 and the results are displayed in the top row of Fig. 14. 

Despite the use of perfect measurement data and a favorable choice of A and c, neither A 
nor c could be accurately reconstructed.
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Additional studies were conducted in which noiseless measurement data were computed 

without committing inverse crime. Namely, the pixel size employed to simulate the 

measurement data was 0.5 times the pixel size employed in the reconstruction algorithm. 

From these data, regularized estimates of A and c were computed. In rows 2–4 of Fig. 14, 

the corresponding regularization parameters (λA, λc) are (0, 0), (10−5, 10−4), (10−4, 10−3), 

and (10−3, 10−2), respectively. These results demonstrate that the numerical instability of the 

JR problem can be mitigated by incorporating appropriate regularization. However, the 

salient observation here is that regularization was required to obtain accurate image 

estimates, even if no stochastic measurement noise or other significant modeling errors other 

than discretization effects were introduced.

D. Feasibility of JR with imperfect data

1) Effect of stochastic measurement noise—JR was performed by use of noisy 

versions of the PA data. The first and second rows of Fig. 15 display the estimates of A and 

c, respectively, along with corresponding image profiles. These results were obtained with 

regularization parameters λA = 10−3 and λc = 10−2. There results show that, with 

appropriate regularization, JR can be robust to the effects of AWGN.

To compare with the JR results, A was also reconstructed by use of a full-wave PACT 

reconstruction method [16] that neglected acoustic heterogeneity by employing a constant 

SOS value. This estimate of A is displayed in the third row of Fig 15. The reconstruction 

method assumed a constant SOS value of 1600 m/s, which was manually tuned to minimize 

the RMSE of the reconstructed image. The RMSE of the reconstructed A by use of the JR 

method and the PACT method ignoring SOS variations was 0.01 and 0.21, respectively. 

These results confirm that the estimate of A obtained by performing JR is more accurate 

than the corresponding estimate reconstructed by use of a PACT method assuming a 

constant SOS.

2) Effect of other modeling errors—In practice, besides stochastic measurement noise 

due to the electronics, other forms of measurement data inconsistency will be present. For 

example, the imaging model utilized in this work neglects the spatial impulse response (SIR) 

of the transducers and acoustic attenuation within the object and coupling medium [31], 

[39]–[43]. Additionally, because the pressure data are assumed to represent the measurable 

quantity, the electrical impulse response (EIR) of the transducer is assumed to be known 

exactly and the deconvolution process to obtain the pressure data is assumed to be error-free. 

These assumptions will be violated in a real-world experiment. A study was conducted to 

demonstrate the performance of JR based on our idealized imaging model in the presence of 

stochastic measurement noise and these factors that are neglected or only partially 

compensated for.

The simulated PA data containing the effects of these physical factors was generated as 

follows.

1. Simulated PA data were generated in a lossy medium. The A and c phantoms 

shown in Fig. 9 were employed. Acoustic attenuation was introduced by use of 

an acoustic attenuation coefficient α that was described by a frequency power 
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law of the form α(r, f) = α0(r)fy [44]. The frequency-independent attenuation 

coefficient α0 = 10 dB MHz and the power law exponent y = 2.0 were employed 

in the data generation, which correspond to the values of α0 and y in human 

kidneys that have the strongest acoustic attenuation among typical biological 

tissues [45]. The simulated PA data were contaminated by 3% AWGN.

2. To model the effects of the SIR, the simulated PA data, described above, were 

computed on a grid with a pitch of 0.1 mm and recorded by 4000 transducers 

that were evenly distributed on the sides of a square with side length 100 mm. 

The recorded data from every 20 consecutive transducers were then averaged to 

emulate the SIR of a 2 mm line transducer. Note that this simplified model of the 

SIR accounts only for the averaging of the pressure data over the active surface 

of a transducer [46] and neglects other factors that may contribute to the SIR of a 

real-world transducer.

3. The simulated PA data containing the acoustic attenuation effects, the SIR effects 

and measurement noise were convolved with an EIR of an actual transducer [39], 

[47]. The convolved data were then deconvolved by use of a curvelet 

deconvolution technique [48]. In the deconvolution, a perturbed EIR was 

employed that was produced by adding 2% Gaussian noise into the spectrum of 

the original EIR. Figure 16(a) displays the perturbed and original EIR and Fig. 

16(b) displays the deconvolved and true pressure signal for a particular 

transducer location.

From these data, JR of A and c was performed with regularization parameters λA = 10−2 and 

λc = 10−1. The JR results are displayed in the top and middle rows of Fig. 17. These results 

suggest that, even with a sufficient A that satisfies the support and k-space conjectures, 

accurate JR may not be feasible in practice due to its instability unless model errors are 

small. However, the jointly reconstructed A has smaller RMSE = 0.12 compared to the 

iterative result (the bottom row of Fig. 17) that was reconstructed with constant SOS of 1600 

m/s and has RSME = 0.22. This shows that, even though accurate JR may not be feasible in 

practice, the JR method provides the opportunity to improve the accuracy of the 

reconstructed A as compared to the use of a PACT reconstruction method that assumes a 

constant SOS [49].

VII. Conclusion and discussion

Because variations in the SOS distribution induce aberrations in the measured PA 

wavefields, certain information regarding an object’s SOS distribution is encoded in the 

PACT measurement data. As such, several investigators have proposed a JR problem in 

which the SOS distribution is concurrently estimated along with the sought-after absorbed 

optical energy density. The purpose of this work was to contribute to a broader 

understanding of the extent to which this problem can be accurately and reliably solved 

under realistic conditions. This was accomplished by conducting a series of numerical 

experiments that elucidated some important numerical properties of the JR problem.
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It is true that different reconstruction algorithms will possess different statistical and 

numerical properties. However, our analysis of Algorithm 1 was systematic in the sense that 

we analyzed each sub-problem independently. We demonstrated that even if the absorbed 

optical energy density A(r) was fixed, estimation of the SOS distribution c(r) was hampered 

by the non-convexity of the associated cost function. These analyses yielded new insights, as 

well as corroborated certain aspects of the JR problem that were identified in previous 

studies. For example, Stefanov et al proved the instability of the linearized JR problem, 

which suggested instability of the more general JR problem as well [28]. In [50], a condition 

for unique reconstruction of c(r) given A(r) was provided, which is consistent with our 

support condition (see Theorem 3.3 therein). In previous work regarding the development of 

JR algorithms, Chen et al proposed a similar optimization-base approach to JR [24]. They 

solved the optimization problem by use of an optimization algorithm called the TR adjoint 

method. Although their algorithm was different from ours, they obtained similar results; 

Accurate JR images were not produced when A is deficient, but the jointly reconstructed A 
could be more accurate than the one reconstructed by use of the TR method with a constant 

SOS.

Similar results can be found in the works by Jiang et al [22], [23], in which the authors 

proposed an optimization approach to JR that was based on the Helmholtz equation instead 

of the wave equation. By use of that method, the authors observed that the accuracy of JR 

results was affected by the temporal frequency band employed in the reconstruction. 

Specifically, the frequency ranges covering lower frequencies gave more accurate JR results 

than higher frequencies. This observation is implicitly contained in our heuristic k-space 

conjecture. Their observations and our k-space conjecture can be understood by noting that 

band-pass or high-pass filtered A are not physical because the non-negativity of A does not 

hold in those cases. Both results showed that the accuracy of JR is impacted by the spatial 

spectrum of A. When A and c possess sharp boundaries and the same structures (i.e., are 

simply scaled versions of each other), the authors also showed that biased estimates of A and 

c could be jointly reconstructed by incorporating Marquardt and Tikhonov regularizions into 

the reconstruction method. Note that in this case, A and c satisfied our support and k-space 

conjectures. By use of regularization, the authors showed that their algorithm was insensitive 

to random noise in the measurement, which is congruous with our observations. Although 

the reconstructed images were biased, the authors showed that the jointly reconstructed A 
was more accurate than the image reconstructed with a homogeneous SOS, which is 

consistent with our results. In addition, they also observed that the jointly reconstructed A 
was more accurate than the jointly reconstructed c, which, again, indicated the inverse 

problem of reconstructing c is more unstable compared to the reconstruction of A.

However, none of these works reported a systematic investigation of the numerical 

properties of the JR problem or provided broad insights that allow one to predict when 

accurate JR may be possible. In particular, the impact of the spatial support and spatial 

frequency content of A(r) relative to that of c(r) was not explored. In the current study, we 

have demonstrated that, even if the measurement data are perfect, accurate JR may not be 

achievable.
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The investigation of the JR problem by use of experimental data remains a topic for future 

investigation. However, based on the presented studies, the task of performing accurate JR 

under experimental conditions is likely to be highly challenging and will require accurate 

modeling of the imaging operator. This will generally require the use of the 3D wave 

equation instead of 2D wave equation. A line search is inevitable in any nonlinear 

optimization algorithm that is employed to estimate the solution of Sub-Problem #2, which 

will create a very large computational burden in the 3D case. Additionally, in this study, a 

lossless fluid medium was assumed by the reconstruction method. However, in certain 

applications, density variations and/or acoustic absorption may not be negligible [9], [51]. 

These assumptions can, in principle, be relaxed when formulating the JR problem.

Finally, due to its instability, it will likely be benefical to incorporate additional information 

into the JR problem. One possibility is to augment the PACT measurement data with a small 

number of ultrasound computed tomography (USCT) measurements. The investigation of 

the JR problem by combining PACT and USCT measurements is underway [52].
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Appendix: calculating the gradient of (15)

The gradient of the first term in Eq. (15) can be calculated by discretizing the the Fréchet 

derivative (7)

(18)

where ∘ denotes Hadamard product, C−3 is defined as
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(19)

pl and ql (l = 0, ···, L − 1) are defined as

(20)

and

(21)

representing the PA wavefield and the adjoint wavefield sampled at the 3D Cartesian grid 

vertices rn (n = 1, ···, N) and at time t = lΔt, respectively.

If a differentiable approximation of the TV-penalty is adopted, the gradient of the second 

term in (15) is given by [53]

(22)

and

(23)

where ε is a small positive number to prevent the denominators being zeros, and [c]n denotes 

the n-th grid node of c, and  and  are neighboring nodes before and after the n-th 

node along the i-th dimension (i = 1, 2, 3), respectively. Likewise,  denotes the 

neighboring node that is after the n-th node along the i-th dimension and before the n-th 

node along the j-th dimension.

Huang et al. Page 22

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2017 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The gradient of the objective function in (15) is then given by the sum of Eqs. (18) and (22).
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Fig. 1. 
Schematic of the 2D circular measurement geometry employed in the heuristic analysis of 

Sub-Problem #2 described in Sec. IV. The coordinates rβ and rβ′ denote the transducer 

locations that correspond to the intersection points of the line r · n̂ = d with the measurement 

circle. In this example, supp(c) ⊆ supp(A).
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Fig. 2. 
Two cases addressed in the heuristic analysis of Sub-Problem #2 described in Sec. IV: (a) 

Case where supp(c) is enclosed by supp(A); and (b) Case where supp(c) is not enclosed by 

supp(A). In (b), certain line integral data for the slowness distribution in a subset of supp(c) 

are not measured, as indicated by the dashed lines through the regions covered by lines.
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Fig. 3. 
Subfigures (a) and (b) display the numerical phantoms that specified A and c that were 

employed to investigate the JR cost function topology in Sec. VI-A.
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Fig. 4. 
Subfigure (a) displays a surface plot of the data fidelity term in the JR cost function and the 

corresponding profile corresponding to As = 1 is shown in subfigure (b). Details are 

provided in Sec. VI-A.
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Fig. 5. 
Profiles of the normalized data fidelity term corresponding to As = 1 for different radii of the 

disk phantom that specified A are displayed in subfigure (a). Subfigure (b) displays a plot of 

the width of the valleys in (a) versus the disk radius.
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Fig. 6. 
The numerical SOS phantom described in Sec. VI-B that was utilized in the investigations of 

Sub-Problem #2.
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Fig. 7. 
Numerical investigations of Sub-Problem #2 - Spatial support effects: Two different 

phantoms A that satisfy the support conjecture are shown in subfigures (a) and (d). The 

estimates of c obtained by estimating the solution of Sub-Problem #2 by use of noiseless 

data and the corresponding A are shown in subfigures (b) and (e). Image profiles through the 

estimates of c are shown in subfigures (c) and (f).

Huang et al. Page 30

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2017 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Numerical investigations of Sub-Problem #2 - Spatial support effects: Four different 

phantoms A that violated the support conjecture are shown in subfigures (a), (d), (g), and (j). 

The estimates of c obtained by estimating the solution of Sub-Problem #2 by use of 

noiseless data and the corresponding A are shown in subfigures (b), (e), (h), and (k). Image 

profiles through the estimates of c are shown in subfigures (c), (f), (i), and (l).
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Fig. 9. 
The numerical phantoms representing (a) A and (b) c that are described in Sec. VI-B2.
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Fig. 10. 
Numerical investigations of Sub-Problem #2 - Spatial bandwidth effects: As described in 

Sec. VI-B2, unregularized estimates of c were reconstructed from noiseless and noisy data 

and a series of A that had different spatial bandwidths relative to that of the sought-after c. 

From the top to the bottom rows, the results correspond to relative bandwidths of A to c of 

0.25, 0.44, and 1.0, respectively. Subfigures (a), (e), and (i) correspond to images 

reconstructed from perfect measurement data and the associated image profiles are displayed 

in subfigures (b), (f), and (j). Subfigures (c), (g), and (k) correspond to images reconstructed 

from noisy measurement data and the associated image profiles are displayed in subfigures 

(d), (h), and (l).
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Fig. 11. 
Numerical investigations of Sub-Problem #2 - Spatial bandwidth effects: Plots of RMSE of 

the estimated c as a function of the bandwidth ratio of A to c. Subfigures (a) and (b) 

correspond to the noiseless and noisy results, repectively.
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Fig. 12. 
Numerical investigations of Sub-Problem #2 - Effect of perturbation of A: Two numerical 

phantoms representing A are shown in subfigures (a) and (c). As described in Sec. VI-B3, 

these two phantoms are very similar, with a RMSE between them of only 0.004. 

Unregularized estimates of c reconstructed by use of noiseless simulated measurement data 

and the A specified in (a) and (c) are shown in subfigures (b) and (d), respectively. Although 

the phantoms depicting A are very similar, the reconstructed estimates of c are not.
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Fig. 13. 
Numerical evidence of non-uniqueness of the JR problem: Simulated PA measurement data 

were computed from the (A, c) pairs shown in Figs. 12(a) and (b) and Figs. 12(c) and (d). 

The two pressure profiles corresponding to an arbitrary transducer location are 

superimposed in subfigure (a). Subfigure (b) displays a zoomed-in version of subfigure (a). 

Similar agreement between the profiles was observed at all transducer locations.
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Fig. 14. 
Images obtained via JR from noiseless PA measurements: The first and third columns 

display the estimates of A and c, and the corresponding image profiles are displayed in the 

second and fourth columns, respectively. Each row corresponds to use of different 

regularization parameters λA and λc. From top to bottom, (λA, λc) are (0, 0), (10−5, 10−4), 

(10−4, 10−3), and (10−3, 10−2), respectively.
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Fig. 15. 
Images obtained via JR from noisy PA measurements: The top and middle rows display the 

reconstructed estimates of A and c, respectively, along with the corresponding image 

profiles. The bottom row displays an estimate of A reconstructed by a PACT reconstruction 

method that employed a constant SOS that was manually tuned to minimize RMSE.
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Fig. 16. 
Panel (a): inaccurate EIR compared to the original EIR. Panel (b): deconvolved pressure data 

by use of the inaccurate EIR compared to original pressure data.
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Fig. 17. 
Images obtained via JR from noisy PA measurements in the presence of model error: The 

top and middle rows display the reconstructed estimates of A and c, respectively, along with 

the corresponding image profiles. The bottom row displays an estimate of A reconstructed 

by a PACT reconstruction method that employed a constant SOS that was manually tuned to 

minimize RMSE.
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