
Handheld optical-resolution
photoacoustic microscopy

Li Lin
Pengfei Zhang
Song Xu
Junhui Shi
Lei Li
Junjie Yao
Lidai Wang
Jun Zou
Lihong V. Wang

Li Lin, Pengfei Zhang, Song Xu, Junhui Shi, Lei Li, Junjie Yao, Lidai Wang, Jun Zou, Lihong V. Wang,
“Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016),
doi: 10.1117/1.JBO.22.4.041002.

Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 10/31/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Handheld optical-resolution photoacoustic
microscopy

Li Lin,a,† Pengfei Zhang,a,† Song Xu,b Junhui Shi,a Lei Li,a Junjie Yao,a Lidai Wang,a,‡ Jun Zou,b and
Lihong V. Wanga,*
aWashington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis,
Missouri 63130, United States
bTexas A&M University, Institute for Solid State Electronics, Electrical Engineering Department, 400 Bizzell Street, College Station,
Texas 77840, United States

Abstract. Optical-resolution photoacoustic microscopy (OR-PAM) offers label-free in vivo imaging with high
spatial resolution by acoustically detecting optical absorption contrasts via the photoacoustic effect. We devel-
oped a compact handheld OR-PAM probe for fast photoacoustic imaging. Different from benchtop microscopes,
the handheld probe provides flexibility in imaging various anatomical sites. Resembling a cup in size, the probe
uses a two-axis water-immersible microelectromechanical system mirror to scan both the illuminating optical
beam and resultant acoustic beam. The system performance was tested in vivo by imaging the capillary
bed in a mouse ear and both the capillary bed and a mole on a human volunteer. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.4.041002]
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The American Cancer Society recommends regular examina-
tions of skin lesions as the best way to find skin cancers
early.1 Therefore, a noninvasive device that can easily scan
the body would facilitate such routine examinations. Optical
microscopy has excellent imaging contrast in soft tissue2 and
has been miniaturized for clinical applications. For use in medi-
cal offices and clinics, handheld microscopes have been devel-
oped based on various optical imaging modalities.3–6 Compact
confocal microscopy achieves fast imaging speed with high spa-
tial resolution, but its shallow imaging depth (200 to 300 μm)
limits its wide application.3,4 Optical coherence tomography-
based probes exploit the optical contrast in backscattered
light5,6 and are complementary to photoacoustic tomography
(PAT), which shows the optical absorption contrast.

PAT is a hybrid imaging modality in which laser-generated
ultrasound waves are used to obtain three-dimensional (3-D)
images of soft tissue.7,8 A major implementation of PAT, opti-
cal-resolution photoacoustic microscopy (OR-PAM), provides
optical absorption contrast with high resolution9 and has been
proven capable of anatomical, chemical, functional, and meta-
bolic imaging.10–15 By tightly focusing the laser beam to a depth
within the optical diffusion limit, OR-PAM provides capillary-
level spatial resolution.10 Recently, an OR-PAM system used a
water-immersion optical focusing lens with a numerical aperture
of 1.23 to improve the spatial resolution to 220 nm.16 The im-
aging depth or thickness has also been improved by using near-
infrared light17 or double illumination.18 High-speed OR-PAM
has been achieved by fast scanning the optical and acoustic

foci with a one-axis water-immersible microelectromechanical
system (MEMS) and by slow scanning the samples along the
orthogonal directions.19

In this article, we present a handheld probe, based on
OR-PAM, that uses a newly developed two-axis water-immers-
ible MEMS scanning mirror.20 In the OR-PAM probe, the opti-
cal and acoustic beams are confocally configured to maximize
the signal-to-noise ratio (SNR).10,21,22 The two beams are fast
scanned by the MEMS mirror, yielding a 3-D imaging rate
of 2 Hz over a 2.5 × 2.0 × 0.5 mm3 volume. This probe was
tested in vivo on both the mouse ear and human skin.

Figure 1(a) is a schematic of the optical and acoustic ele-
ments in the OR-PAM handheld probe. A laser beam is directed
into the probe through a single-mode fiber (P1-460B-FC-2,
Thorlabs), which guides the light to a lens tube in the handheld
probe. Two optical lenses (AC127-025-A, Thorlabs; and
PAC025, Newport) in the lens tube focus the light to an opti-
cal–acoustic beam combiner immersed in water. To seal the
lens tube from water, we sealed the second lens at the end of
the lens tube with silicone caulk. The beam combiner, composed
of an aluminum-coated prism (MRA10-F01, Thorlabs) and an
uncoated prism (PS910, Thorlabs), provides acoustic and opti-
cal coaxial alignments. The thin aluminum coating reflects light,
but transmits sound.22 The focused laser beam is reflected by the
MEMS mirror plate onto the surface of the object to be imaged.
The resultant photoacoustic waves are reflected by the MEMS
mirror plate to an acoustic lens (LC1975, Thorlabs) that is
attached to the right side of the combiner. The photoacoustic
waves are then detected by a 50-MHz ultrasound transducer
(V214-BB-RM, Olympus-NDT), which is tightly attached to
the beam combiner from the left. Thus, the laser beam and
acoustic beam are confocally aligned through the beam com-
biner and the MEMS scanning mirror. An optical correction
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lens (45-119, Edmund) is attached to the top surface of the com-
biner to correct prism-induced aberration.10 Volumetric imaging
is provided by fast rotational scanning along the x-axis and slow
rotational scanning along the y-axis, as well as by the time-
resolved detection of the ultrasound signal. The imaging
probe is filled with water for ultrasound coupling.

Figure 1(b) is a 3-D rendering of the OR-PAM handheld
probe. The probe has dimensions of 80 mm × 115 mm ×
150 mm along the x, y, and z axes. The lens tube is mounted
on a five-axis lens positioner (LP-05A, Newport), which is
used for fine tuning the laser beam. The MEMS scanning mir-
ror is fixed on a compact linear stage (DS25-XY, Newport) for
precise position adjustment. The front, bottom, and cover pan-
els are made of transparent acrylic to help to localize the tar-
geted area. The imaging window on the bottom panel has a
diameter of 6 mm and is sealed with a transparent film. A
clamp mounted on the top of the probe protects the fiber
from excessive bending. The PA signal from the ultrasound
transducer is amplified by two integrated amplifiers (ZX60-
43-S+ and ZFL-500LN+, Minicircuits) that provide a total
amplification of 41 dB. The probe is grounded through a
cable attached to the backboard.

The handheld probe is connected to the main system includ-
ing the laser, MEMS driver, data acquisition (DAQ) devices, and
computer. The light is provided by a fiber laser (VPFL-G-10,
VGEN) that generates 5-ns pulses at 532 nm, with a pulse rep-
etition rate of 88 kHz. The MEMS mirror is driven by a sinus-
oidal current from a homemade MEMS driver. The amplified
PA signal from the probe is recorded by the DAQ device
(ATS9350, Alazar Technologies) with a sampling rate of
250 MHz. A low-pass filter (BLP-70+, Minicircuits) is con-
nected between the amplifier and the analog-to-digital converter
to eliminate high-frequency noises. Both the mirror scanning
and the DAQ are synchronized with the laser pulse.

To characterize the lateral resolution of the handheld
OR-PAM system, the edge of a sharp blade was imaged in
water, with a step size of 1 μm and a scanning range of
250 μm along the x-axis. After conversion from polar coordi-
nates to Cartesian coordinates, the maximum amplitude projec-
tion (MAP) of the B-scan along the acoustic axis was calculated
and is plotted as a function of the displacement of the optical and
acoustic foci from the edge (Fig. 2). Assuming a Gaussian line
spread function, fitting of the measured data to an error function
indicates a lateral resolution of 5.0 μm (FWHM), which agrees
well with the theoretical diffraction-limited focused laser spot
size (4.9 μm). The lateral resolution in tissue decreases with im-
aging depth due to optical scattering.17 The axial resolution of
the system is determined by the bandwidth of the ultrasound
transducer and was estimated to be 26 μm. The penetration
depth of the handheld probe was quantified by a hair embedded
in an optical scattering medium consisting of 2% Intralipid sol-
ution (reduced scattering coefficient μ 0

s ¼ 15 cm−1 at 532 nm)
and 3% agar gel, which mimics the reduced scattering coeffi-
cient of the human skin.23 The x-z projected MAP image is
shown in Fig. 2(b). The PA signal from the hair 0.54 mm
beneath the surface (indicated by the dashed line) was still
detectable when 100-nJ pulse energy was used.

To demonstrate the imaging capability of the handheld
OR-PAM probe, blood vessels in a nude mouse ear were imaged
in vivo. All experimental animal procedures followed the labo-
ratory animal protocol approved by the Animal Studies
Committee of Washington University in St. Louis. The mouse
ear was acoustically coupled beneath the imaging window by
ultrasound gel. The round-trip scanning frequency of the MEMS
mirror was set at 220 Hz for the fast axis and 1 Hz for the slow
axis. Then, a region of 2.5 mm × 2.0 mm was imaged with a
volumetric imaging rate of 2 Hz (bidirectional scanning). The
laser pulse energy was measured as 130 nJ under the imaging

Fig. 1 Schematic of the OR-PAM handheld probe. (a) 2-D sketch of the optical and acoustic beams in
the probe. UT, ultrasound transducer; AC, aluminum coating; AL, acoustic lens. (b) 3-D rendering of the
OR-PAM handheld probe. The front and the left side panels are removed for better visualization.
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window, and an image with an SNR of 28 dB was obtained after
averaging over 25 volumes, as shown in Fig. 3.

To demonstrate the fast imaging capability of the handheld
OR-PAM system, the vessels in a mouse ear were continuously
scanned after a tail vein injection of 0.6 mL of 0.9% saline. The
postinjection changes in the PA signal from the vessels were
monitored with a temporal resolution of 2 Hz. Representative
images taken at different times after the injection [Fig. 4(a)]
show a decrease in the PA signal followed by a slower recovery

process. To quantitatively characterize the changes in the signal
from the vessels, we calculated the average of the pixel ampli-
tude over the region indicated by the dashed box. The back-
ground signal was calculated by averaging over a region of
the same size but without vessels inside. The net signal from
the blood vessels is shown as a function of time in Fig. 4(b).
As can be seen, the average signal amplitude dropped quickly
by 60% in the first 100 s, and then increased slowly to 65% of
the initial value in the next 220 s. The initial drop in the signal
was probably due to a quick wave of injected saline before it was
homogeneously mixed with blood, while the slow increase later
was due to the diluting effect of blood.24

To demonstrate the flexibility of the handheld probe in clini-
cal applications, we tested the system by imaging the human
skin. All the human experiments followed a protocol approved
by the Institutional Review Board administered by the Human
Research Protection Office at Washington University in
St. Louis. We first imaged the blood vessels under a cuticle.
To obtain higher SNR, the region of interest was scanned repeat-
edly at a volumetric imaging rate of 2 Hz, and images were aver-
aged over 20 C-scans. It should be noted that the small shift of
the same imaging region during the DAQ was corrected by
image translation transform, with the shifts calculated from
image correlation. In Fig. 5(a), the vessels under the cuticle
can be seen clearly, with an SNR of 26 dB.

Fig. 3 Handheld OR-PAM of vessels in a mouse ear.

Fig. 4 Hemoglobin concentration monitoring in the vessels in a mouse
ear after tail vein injection of 0.9% saline. (a) Representative images
recorded at different time points after the injection of 0.6 mL saline.
The stamps on the images indicate the time (min:s) after the injection.
(b) The signal from the blood vessels within the dashed box in (a) as a
function of time. The injection procedure lasted 75 s.

Fig. 2 Characteristics of the handheld OR-PAM probe. (a) Lateral
resolution measurement by imaging a sharp edge. Solid squares:
the PA amplitude when the laser beam was scanned across the
edge. Solid curve: the fit of the measured data to an error function.
Dashed line: the extracted Gaussian-shaped line spread function.
(b) Penetration depth measured by a hair embedded in an optical
scattering medium mimicking skin tissue. The acoustic attenuation
has been compensated for by multiplying the PA signal by a depth-
dependent exponential correction factor. The gray bar shows the nor-
malized PA signal amplitude.
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The key advantage of a handheld system is its capability of
imaging an area that is usually not accessible by a benchtop
device. To demonstrate this advantage, a red mole on a healthy
volunteer’s leg was imaged by the handheld OR-PAM probe, as
shown in Figs. 5(b)–5(d). The scan fully covered the mole, and
a single C-scan PAM image was able to resolve the features,
with an SNR of 20 dB. The optical fluence at the skin surface
was around 18 mJ∕cm2, just below the American National
Standards Institute limit.25

In summary, we have developed a handheld OR-PAM probe
equipped with a water-immersible two-dimensional (2-D)-
MEMS mirror for fast skin imaging. Potential applications of
the probe have been demonstrated on a mouse ear and human
skin. The scanning range of the probe is 2.5 mm × 2.0 mm, and
the volumetric imaging rate is 2 Hz, which is mainly limited by
the resonant frequency of the fast axis of the MEMS. The pen-
etration depth of the present optical-resolution probe is 540 μm,
which is chiefly limited by the optical scattering in the tissue and
can be improved by using near-infrared light that usually under-
goes less scattering in biological tissue.17 Compared with the
handheld acoustic-resolution photoacoustic microscopy and
linear array-based photoacoustic computed tomography, the
handheld OR-PAM provides finer spatial resolutions in the
superficial region. Moreover, with multiwavelength measure-
ments, OR-PAM has a better accuracy in quantifying the oxygen
saturation of hemoglobin.11,26 Therefore, the handheld OR-PAM
has potential for intraoperative cancer margin assessment by
measuring both the vasculature and the oxygen saturation.
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