High-resolution Biophotonic Tomography

Lihong V. Wang, Ph. D.
Prof. of Biomedical & Electrical Engineering
Royce E. Wisenbaker II Endowed Professor
Texas A&M University
URL: http://oilab.tamu.edu
Credits to Lab Members

CURRENT LAB MEMBERS
- D. Cubian
- A. Garcia-Uribe
- X. Jin
- R. Kothapalli
- C. Kim
- G. Ku
- L. Li
- M. Li
- K. Maslov
- J. Oh
- S. Sakadzic
- M. Sivaramakrishnan
- E. Smith
- K. Song
- M. Todorovic
- X. Xie
- M. Xu
- X. Xu
- H. Zhang
- R. Zemp

SELECTED FORMER LAB MEMBERS
- J. Ai, PhD
- D. Feng, MS
- J. Hollmann
- S. Jiao, PhD
- J. Li, PhD
- G. Marquez, PhD
- M. Mehrubeoglu, PhD
- H. Sun, PhD
- Y. Pang, MS
- X. Wang, PhD
- Y. Wang, MS
- Y. Xu, PhD
- G. Yao, PhD
- W. Yu, MS
- X. Zhao, MS

http://oilab.tamu.edu -- 2
Credits to Collaborators

- **Texas A&M University (Animal study):**
 - G. Stoica, DVM

- **UT MD Anderson Cancer Center (Clinical study & molecular contrast agents):**
 - M. Duvic, MD
 - B. Fornage, MD
 - K. Hunt, MD
 - C. Li, PhD
 - V. Prieto, MD

- **UT Dallas (Data classification):**
 - N. Kehtarnavaz, PhD

- **Nanospectra (Nanoshells):**
 - P. O’Neal, PhD
 - J. Schwartz, PhD
Introduction

Motivation and challenges

Example 1: Optical contrast in skin cancer detection

Example 2: Optical contrast in *Mueller* OCT

Ultrasound-modulated optical tomography (UOT)

Laser-induced photo-acoustic tomography (PAT)

RF-induced thermo-acoustic tomography (TAT)

Summary
Motivation for Optical Imaging

- Safety — Non-ionizing radiation: photon energy is \sim2 eV.
- Physics — Related to the molecular conformation of tissue.
- Optics — High intrinsic contrast:
 - Optical absorption: Angiogenesis, hyper-metabolism, apoptosis, necrosis, and exogenous contrast agents.
 - Optical scattering: Size of cell nuclei.
 - Optical polarization: Collagen, muscle fibers.
- Physiology — Functional imaging of physiological parameters:
 - Oxygen saturation of hemoglobin
 - Total hemoglobin concentration (related to blood volume)
 - Enlargement of cell nuclei
 - Orientation of collagen
 - Denaturation of collagen
 - Blood flow (Doppler)
- Physiology — Molecular imaging (exogenous contrast agents).
-

http://oilab.tamu.edu -- 5
Animated Propagation of Light in Biological Tissue

- SNOM: Scanning near-field optical microscopy
- CFM: Confocal microscopy
- 2PM: Two-photon microscopy
- SHM: Second harmonic microscopy
- OCT: Optical coherence tomography
- DOT: Diffuse optical tomography
- UOT: Ultrasound-modulated optical tomography
- PAT: Photo-acoustic tomography

Simulation software available from http://oilab.tamu.edu
Outline

- Introduction
 - Motivation and challenges
 - Example 1: Optical contrast in skin cancer detection
 - Example 2: Optical contrast in Mueller OCT
- Ultrasound-modulated optical tomography (UOT)
- Laser-induced photo-acoustic tomography (PAT)
- RF-induced thermo-acoustic tomography (TAT)
- Summary
Separation of Benign and Malignant Lesions in Group 1

Training

Prospective Blind Testing

Benign (24) Cancerous (13)
AK: Actinic Keratosis (6) SCC: Squamous Cell Carcinoma (8)
SK: Seborheic Keratosis (17) BCC: Basal Cell Carcinoma (5)
W: Warts (1)

http://oilab.tamu.edu
Separation of Benign and Malignant Lesions in Group 2

Training

<table>
<thead>
<tr>
<th></th>
<th>Combined Image Feature CIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td></td>
</tr>
<tr>
<td>Dysplasia</td>
<td></td>
</tr>
</tbody>
</table>

Prospective Blind Testing

<table>
<thead>
<tr>
<th></th>
<th>Combined Image Feature CIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td></td>
</tr>
<tr>
<td>Dysplasia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Relative case number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>0, 10, 20, 30, 40</td>
</tr>
<tr>
<td>DN</td>
<td>0, 10, 15, 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>(29)</td>
</tr>
<tr>
<td>Pre-cancerous</td>
<td>(36)</td>
</tr>
</tbody>
</table>

| | CN: Common Nevi | DN: Dysplastic Nevi |

http://oilab.tamu.edu
Origins of Optical Signatures

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cancerous</td>
<td>Benign</td>
</tr>
<tr>
<td>Oxygen saturation of</td>
<td>0.46±0.02</td>
<td>0.49±0.02</td>
</tr>
<tr>
<td>hemoglobin (SO$_2$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hemoglobin C$_{Hb}$</td>
<td>0.14±0.08</td>
<td>0.31±0.21</td>
</tr>
<tr>
<td>Size of cell nuclei (μm)</td>
<td>20.4±7.5</td>
<td>6.3±5.5</td>
</tr>
</tbody>
</table>

Applied Optics 43, 2643 (2004).
Outline

- Introduction
 - Motivation and challenges
 - Example 1: Optical contrast in skin cancer detection
 - Example 2: Optical contrast in *Mueller* OCT
- Ultrasound-modulated optical tomography (UOT)
- Laser-induced photo-acoustic tomography (PAT)
- RF-induced thermo-acoustic tomography (TAT)
- Summary
Mueller Images of Porcine Tendon (0.5 mm × 1 mm)

- 10 micron resolution
- ~1 mm imaging depth
- Birefringence: \((4.2 \pm 0.3) \times 10^{-3}\) (e.g., density of collagen)
- Orientation: accurate to <5° (e.g., direction of collagen)
- Diattenuation: 0.26/mm (e.g., property of collagen)

http://oilab.tamu.edu -- 12
(a) Intensity
(b) Retardation (integrated)
(c) Retardation (differentiated)
(d) Histology (HE)

E – epidermis;
P – papillae;
B – burn

http://oilab.tamu.edu -- 13
Outline

- Introduction
 - Motivation and challenges
 - Example 1: Optical contrast in skin cancer detection
 - Example 2: Optical contrast in *Mueller* OCT
- Ultrasound-modulated optical tomography (UOT)
- Laser-induced photo-acoustic tomography (PAT)
- RF-induced thermo-acoustic tomography (TAT)
- Summary
Motivation for Combining Light with Ultrasound

<table>
<thead>
<tr>
<th>Properties</th>
<th>Diffuse optical tomography</th>
<th>Ultrasonic imaging</th>
<th>Ultrasound-modulated optical tomography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>Excellent (functional)</td>
<td>Poor in early cancers</td>
<td>Excellent (= DOT)</td>
</tr>
<tr>
<td>Resolution</td>
<td>Poor (~5-10 mm)</td>
<td>Excellent & scalable</td>
<td>Excellent (= US)</td>
</tr>
<tr>
<td>Imaging depth</td>
<td>Good (~5 cm)</td>
<td>Good & scalable</td>
<td>Good</td>
</tr>
<tr>
<td>Speckle artifacts</td>
<td>None</td>
<td>Strong</td>
<td>None</td>
</tr>
<tr>
<td>Scattering coefficient</td>
<td>Strong (~100 /cm)</td>
<td>Weak (~0.3 /cm)</td>
<td></td>
</tr>
</tbody>
</table>
Power Spectrum of Ultrasound-modulated Light

Modulation depth:

\[M = \frac{I_1}{I_0} \]

References:

Physical Review E 72, 036620 (2005)

http://oilab.tamu.edu -- 16
Ultrasound-modulated Optical Tomography

- Laser
- Function Generator
- Power Amplifier
- Ultrasonic Transducer
- Sample
- CCD Camera
- Computer

http://oilab.tamu.edu
Image of 4.5-cm Thick Biological Tissue

http://oilab.tamu.edu -- 18
Ultrasound-modulated Optical Computed Tomography: Experimental Configuration

(Reflection detection) (Transmission detection)

CCD Biological sample CCD

Laser

Ultrasonic beam

Object

Ultrasonic transducer

Rotation

Linear scan

http://oilab.tamu.edu -- 19
Ultrasound-modulated Optical Computed Tomography: Tomogram vs. Photograph

http://oilab.tamu.edu -- 20
Frequency Encoding along Ultrasonic Axis (z)

Analogous to MRI

Snapshot of frequency

Ultrasonic Transducer

Laser

Ultrasonic Absorber

http://oilab.tamu.edu -- 21
Image of Biological Tissue Acquired with Frequency Sweep

Ultrasonic axis z

Lateral dimension x

Axial Resolution by Pulsed Ultrasound

http://oilab.tamu.edu -- 23
Outline

- Introduction
 - Motivation and challenges
 - Example 1: Optical contrast in skin cancer detection
 - Example 2: Optical contrast in *Mueller* OCT
- Ultrasound-modulated optical tomography (UOT)
- Laser-induced photo-acoustic tomography (PAT)
- RF-induced thermo-acoustic tomography (TAT)
- Summary
Principle of Photo-acoustic Tomography

(1) Laser pulse (<ANSI limit: e.g., 20 mJ/cm²)

(2) Local heating (~ mK)

(3) Ultrasonic emission

(4) Ultrasonic detection
Experimental Setup of Photo-acoustic Tomography

- Nd:YAG
- Dye-laser
- Step motor
- Concave lens
- Ground glass
- Water tank
- Transducer
- Oscilloscope
- Computer
- Amplifier
- Trigger

http://oilab.tamu.edu -- 26
Photo-acoustic Reconstruction: Inverse-source Problem

Forward problem :

\[p(\mathbf{r}, t) = C \int \int \int \frac{d\mathbf{r}'}{|\mathbf{r}' - \mathbf{r}|} A(\mathbf{r}') \frac{\partial I(t')}{\partial t'} \bigg|_{t' = t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}} \]

For an impulse source: \(I(t) = I_0 \delta(t) \)

Inverse solution when detection radius \(r_0 >> \) wavelength \(\lambda_a \) :

\[A(\mathbf{r}) = C' \int \int d\Omega_0 \frac{1}{t} \frac{\partial p(\mathbf{r}_0, t)}{\partial t} \bigg|_{t = \frac{|\mathbf{r}_0 - \mathbf{r}|}{c}} \]

http://oilab.tamu.edu -- 27
Non-invasive Transcranial Photo-acoustic Image of a Rat Brain with a Lesion

Open-skull photograph

L: Lesion
LH: Left hemisphere
MF: Median fissure
RH: Right hemisphere
V: Blood vessel

http://oilab.tamu.edu -- 28
Functional Imaging of Whisker Stimulation In Vivo

PAT image (left stimulation)

PAT image (right stimulation)

http://oilab.tamu.edu -- 29
Non-invasive Transcranial Photo-acoustic Image of a Mouse Brain: 3D Imaging

PAT image (8 mm deep)

Histology

CB: Cerebellum
HC: Hippocampus
VL: Ventriculi lateralis
VQ: Ventriculi quarti

http://oilab.tamu.edu -- 30
Monitoring of Dynamic Optical Absorption of Nanoshells

Photo-acoustic Angiography of Rat Brains In Vivo

(A) Without ICG-PEG

(B) With ICG-PEG

(C) B – A

(D) Open-skull photo

• Speckle free
• High resolution: 60 μm
• High sensitivity: ~fmol

Spectroscopic Photo-acoustic Tomography: Molecular and Tumor Hypoxia Imaging

- PAT
- Molecular contrast
- Oxygen saturation

Open-skull photo

- Macro-fluorescence
- Thionine stained slice (Depth: ~2 mm from scalp)

http://oilab.tamu.edu -- 33
Spatial Resolution versus Bandwidth in Photo-acoustic Tomography

(a) (b) (c) (d)

Center freq.: 3.5 MHz 10 MHz 20 MHz Open-skull photo

Resolution: 210 µm 60 µm 30 µm

Deeply Penetrating Photoacoustic Tomography
with NIR Excitation & ICG Contrast

http://oilab.tamu.edu
Dark-field Confocal Photoacoustic Microscopy: Schematic and Photograph

http://oilab.tamu.edu -- 36
Dark-field Confocal Photoacoustic Microscopy: Resolution and Depth

B-scan of a black double-stranded cotton thread embedded in rat

- Center frequency: 50 MHz
- Lateral resolution: ~45 microns
- Axial resolution: ~15 microns
- Imaging depth: ~3 mm

http://oilab.tamu.edu -- 37
Dark-field Confocal Photoacoustic Microscopy: Multi-wavelength Functional Imaging

578.5 nm

584.7 nm

590.8 nm

596.6 nm

http://oilab.tamu.edu -- 38
Dark-field Confocal Photo-acoustic Microscopy: Structural and Functional Images

Structural image at 584-nm wavelength

Vessel-by-vessel oxygen saturation

Histology

Artery

Vein

Composite fluorescence image

http://oilab.tamu.edu -- 39
Dark-field Confocal Photo-acoustic Microscopy: Hemodynamics

Structural image at 584 nm

Normoxia to hypoxia

Normoxia to hyperoxia

http://oilab.tamu.edu -- 40
Dark-field Confocal Photo-acoustic Microscopy: Melanoma Imaging

Composite maximum intensity projection (MIP) image projected along z axis obtained with 584-nm and 764-nm wavelengths. MIP images projected along x, y axes obtained with 764-nm wavelength.

http://oilab.tamu.edu
1. Vessels at different depths are distinguished.
2. Vessels with different spatial orientations are visualized.
3. Relationship between the melanoma and vessels is revealed.

Nature Biotech. 24, 848 (2006).
In vivo Image of Tumor with Nanoshells as Contrast Agents

Original
(Contrast enhanced by nanoshells)

Focusing enhanced
(SAFT+CF)

http://oilab.tamu.edu -- 43
Dark-field Confocal Photo-acoustic Microscopy: Human Imaging

http://oilab.tamu.edu
Modern High-resolution Optical Microscopy

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year</th>
<th>Depth</th>
<th>Depth / Resolution</th>
<th>Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confocal microscopy</td>
<td>1970s</td>
<td>~0.5 mm</td>
<td>> 100</td>
<td>Scattering, fluorescence</td>
</tr>
<tr>
<td>Two-photon microscopy</td>
<td>1990s</td>
<td>~0.5 mm</td>
<td>> 100</td>
<td>Fluorescence</td>
</tr>
<tr>
<td>Optical coherence tomography</td>
<td>1990s</td>
<td>~1 mm</td>
<td>> 100</td>
<td>Scattering, polarization</td>
</tr>
<tr>
<td>Confocal photoacoustic microscopy</td>
<td>2005*</td>
<td>~3 mm, scalable</td>
<td>>100</td>
<td>Absorption</td>
</tr>
</tbody>
</table>

http://oilab.tamu.edu -- 45
Outline

- Introduction
 - Motivation and challenges
 - Example 1: Optical contrast in skin cancer detection
 - Example 2: Optical contrast in Mueller OCT
- Ultrasound-modulated optical tomography (UOT)
- Laser-induced photo-acoustic tomography (PAT)
- RF-induced thermo-acoustic tomography (TAT)
- Summary

http://oilab.tamu.edu -- 46
Experimental System for Thermo-acoustic Tomography

Waveguide
Microwave generator
Amplifiers and scope
Water tank
Ultrasonic transducers
Stepper motor
Thermo-acoustic Image of a Mastectomy Specimen

- 11 cm diam. x 9 cm thick
- ~5:1 contrast
- Invasive lobular carcinoma

Tech. in Cancer Res. & Treatment 4, 559 (2005).

http://oilab.tamu.edu -- 48
Summary

- Physically combining ultrasonic and electromagnetic waves (light & RF) provides
 - improved spatial resolution compared to optical or RF imaging
 - new contrast mechanisms compared to ultrasound imaging.
- Spatial resolution is determined by the ultrasonic parameters.
- Spatial resolution is scalable with the ultrasonic parameters.
- Contrast is provided by the electromagnetic properties.
- Deep (~cm) tissue imaging can be achieved.
- Speckle artifacts do not exist.
- Functional imaging can be accomplished with endogenous contrast.
- Molecular imaging can be accomplished with exogenous contrast agents.
- Non-ionizing radiation is used.
- Costs are comparable to those of ultrasound systems.
Funding Sources

ACTIVE
- NIH
 - R01 CA106728
 - R01 NS46214 (BRP)
 - R33 CA094267
 - R01 CA092415
 - R01 EB000712
- NIST
- Whitaker Foundation

RECENTLY COMPLETED
- NIH
 - CA83760
 - CA71980
 - CA68562
 - EB000319
- NSF
- US Army
- Whitaker Foundation

http://oilab.tamu.edu -- 50
Welcome to the Optical Imaging Laboratory, a research laboratory dedicated to the developments of novel non-ionizing tomography and spectroscopy for the early detection of various cancers.