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Abstract
We use a theory termed co-quantum dynamics (CQD) to numerically model spin flip in the
multi-stage Stern–Gerlach (SG) experiment conducted by R. Frisch and E. Segrè. This
experiment consists of two SG apparatuses separated by an inner rotation chamber that varies
the fraction of spin flip. To this day, quantum mechanical treatments inadequately predict the
Frisch–Segrè experiment. Here, we account for electron-nuclear interactions according to CQD
and solve the associated Schrödinger equation. Our simulation utilizes a branching condition to
predict the collapse of electron spins, and the outcome agrees with the Frisch–Segrè
experimental observation and supports CQD as a potential model for electron spin evolution and
collapse.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In what is now the prototypical example of quantum
measurement [1–3], the experiment of Stern and Gerlach in
1922 provided evidence of the quantization of spin. A decade
later, Frisch and Segrè extended this experiment to include two
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of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

Stern–Gerlach (SG) stages separated by an inner rotation (IR)
chamber with rapidly rotatingmagnetic fields, resulting in par-
tial spin flipping [4, 5]. The quantummechanical models of the
Frisch–Segrè experiment include those by Majorana [6] and
Rabi [7–9].Majorana’s formula is similar to the Landau–Zener
formula [10, 11], to which Rabi added the effects of electron-
nuclear spin interaction. Surprisingly, these treatments inad-
equately explain the experimental observation.

To predict the experimental observation, the co-quantum
dynamics (CQD) theory was developed by introducing the
following concepts [12, 13]. CQD considers the interaction
between the electron (µ⃗e) and nuclear (µ⃗n) magnetic moments
through the torque-averaged instead of self-averaged mag-
netic field, introduces an induction term, and treats µ⃗n as a
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non-collapsing co-quantum of the principal quantum µ⃗e. The
strength of the electron–nuclear coupling depends on the mag-
nitudes and relative orientations of µ⃗e and µ⃗n [14]. Although
it is weaker than spin-orbit coupling, this coupling is import-
ant for an electron spin in the S state where the orbital angu-
lar momentum vanishes on average [15]. The electron spin is
influenced by not only the external magnetic field but also the
nuclear magnetic field B⃗n due to the presence of µ⃗n. Therefore,
the evolution of µ⃗e in the IR chamber results from the com-
bined effects of B⃗n and a quadrupole magnetic field B⃗q, which
is generated by combining the magnetic field from the wire
and a vertical remnant fringe magnetic field B⃗r [6]. In SG
apparatuses with a strong external magnetic field B⃗0, the mag-
netic moments of the electron and nucleus precess in oppos-
ite directions at different speeds. As a result of induction in
the electron–nuclear interaction, µ⃗e is repelled by µ⃗n to either
align or anti-align with B⃗0, in other words, collapses to the
eigenstates. In contrast to precession, collapse can be regarded
as the secondarymotion of the electronmagnetic moment. The
electron spin collapses much faster than the nuclear spin due
to the slower precession of µ⃗n, so we neglect the collapse of
the co-quantum.

The co-quantum guides the collapse of the principal
quantum according to their relative orientations at the time
of measurement, yielding the CQD branching condition [12,
13]. CQD has been shown to statistically recover the quantum
mechanical wave function from the continuous angular dis-
tribution of the co-quantum that is assumed to be isotropic
for atoms immediately out of the oven (see figure 1) [12, 13].
However, the angular distribution of the co-quantum is altered
by the collapse of the principal quantum. Selection of one
branch of an SG apparatus automatically selects the portion
of the co-quanta that could guide the principal quanta to the
specific eigenstate (see section 3). Therefore, neither branch
of the SG output has an isotropic distribution of co-quanta,
which has not been considered in previous theories for multi-
stage SG experiments [6, 7].

Here, we present a numerical simulation using the
Schrödinger equation based on the torque-averaged magnetic
field B⃗n of the co-quantum with a continuous angular distri-
bution, along with the branching condition, to yield a CQD
model for the flip of electron spin in the Frisch–Segrè experi-
ment. Our numerical simulation agrees with the Frisch–Segrè
experimental observation and confirms our previous closed-
form analytical solution of CQD [12, 13], which builds on the
insightful analysis by Majorana [6].

2. Method

The Frisch–Segrè experiment consists of two SG apparat-
uses separated by an IR chamber, which rotates µ⃗e using an
approximate quadrupole magnetic field, as shown in figure 1.
Potassium atoms thermally effused from an oven enter the first
SG apparatus, where they are split into up and down branches.
The CQD branching condition states that if µ⃗e is angularly
closer (farther) to the +z-axis than µ⃗n, µ⃗e is repelled by µ⃗n to

collapse parallel (antiparallel) to the +z-axis. Therefore, the
pre-collapse state of µ⃗e with a given µ⃗n determines the meas-
urement outcome according to the relative polar orientations
of µ⃗e and µ⃗n:

|µe©µn⟩= 1−sgn(θe−θn)
2 |+z⟩+ 1+sgn(θe−θn)

2 |−z⟩ , (1)

where the prefix © indicates the co-quantum, sgn denotes the
sign function, and θe and θn designate the polar angles of µ⃗e

and µ⃗n in spherical coordinates in R3, respectively. We use
|+z⟩ and |−z⟩ to denote the states where µ⃗e is aligned with
+z or −z, respectively. Upon selecting the |+z⟩ branch from
SG1, the associated co-quanta follow an anisotropic probabil-
ity density function [12]:

pn (θn,ϕ n) =
1−cosθn

4π . (2)

At the entrance of the IR chamber, the initial state of µ⃗e is
|+z⟩ with (θe0,ϕ e0) = (0,0), where θe0 and ϕ e0 are the ini-
tial polar and azimuthal angles of µ⃗e in spherical coordin-
ates in R3. In contrast to conventional quantum mechanical
descriptions [7, 8], CQD assumes that the angular distribution
of the co-quanta is continuous. The initial polar and azimuthal
angles (θn0,ϕ n0) of µ⃗n are sampled from equation (2) through
the Monte Carlo method as follows:

θn0 = 2arcsin
(
ζ

1
4
1

)
, ϕ n0 = 2πζ2, (3)

where ζ1 and ζ2 are uniformly distributed random numbers
between 0 and 1.

The IR chamber consists of a current-carrying wire along
the x-axis and a remnant field B⃗r along the z-axis with a mag-
nitude of 0.42× 10−4 T. The magnetic field generated by the
wire and the remnant field cancel at r⃗null = (0,0,−za) of the
coordinate system in figure 1, forming an approximate quad-
rupole field [16]. The field gradient is found from the wire cur-
rent I and the remnant field to be [6]

G= 2π
µ0I
B2
r . (4)

Let t be the flight time of an atom traveling with velocity v
(800 m s−1) and za the vertical distance between the selected
atomic beam and the wire (1.05× 10−4 m).We set the time t=
0 when the atom is at the origin of the coordinate. The quad-
rupole field B⃗q at r⃗= (0,vt,0) is given by B⃗q = (0,Gza,Gvt).

In addition to the external field, the torque-averaged nuclear
magnetic field given below also acts on the electron [12]:

B⃗n =
5µ0

16πR3 µ⃗n, (5)

where µ0 is the vacuum permeability, R= 2.75× 10−10 m
is the van der Waals radius of the potassium atom [17], and
µn = 1.977× 10−27 J/T is the magnitude of the nuclear mag-
netic moment. The total magnetic field experienced by µ⃗e is
B⃗= B⃗q + B⃗n = (Bx,By,Bz):

Bx = Bn sinθn cosϕ n, (6)

2
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Figure 1. Illustration of the multi-stage SG experiment conducted by Frisch and Segrè. Potassium atoms from an oven are sent to the first
SG apparatus (SG1). Conceptually, a slit is used to select the up branch of SG1; although this slit was physically placed after the quadrupole
field in the experiment, we relocate it to simplify the analysis. |+z⟩ and |−z⟩ denote the up state and down state of µ⃗e, respectively. Atoms
travel along the y-axis through a quadrupole magnetic field B⃗q. The center (null point) of the quadrupole field is at r⃗null = (0,0,−za), where
za = 1.05× 10−4 m. Following the spin rotation by the quadrupole field, the second SG apparatus (SG2) measures the fraction of spin slip
of the electron magnetic moment. µ⃗e, electric magnetic moment. µ⃗n, nuclear magnetic moment.

By = Gza +Bn sinθn sinϕ n, (7)

Bz = Gvt+Bn cosθn . (8)

The final orientation of µ⃗e at the output of the IR chamber
is numerically calculated through the Schrödinger equation
with a modified Hamiltonian to account for the contribution
of µ⃗n. Because we have shown that the Schrödinger equation
for electron spin can be derived from the Bloch equation [13],
the Schrödinger equation is used here as a mathematical tool;
a direct numerical solution to the Bloch equation is reported
separately [16].

The evolution of the state of the electron magnetic moment

|µe⟩=
(

c1
c2

)
=

(
cos(θe/2)

sin(θe/2)exp(iϕ e)

)
is governed by

the Schrödinger equation:

ih̄ d
dt |µe⟩= H|µe⟩, (9)

where c1 and c2 are the probability amplitudes of the |+z⟩ and
|−z⟩ states, and the Hamiltonian is

H=− 1
2 h̄γeB⃗ · σ⃗ . (10)

Substituting the Pauli vector σ⃗ yields

H=− 1
2 h̄γe

(
Bz Bx− iBy

Bx+ iBy −Bz

)
, (11)

where γe =−1.761× 1011rad/(sT) is the gyromagnetic ratio
of the electron. To simplify equation (9), we replace the time
t with dimensionless time τ :

τ = 1
2

√
γeGv t+ 1

2

√
γe
GvBn cosθn . (12)

We assume that θn ≈ θn0 because the collapse of µ⃗n is too
slow to occur during the flight time. The azimuthal angle
evolves as ϕ n = wnτ +ϕ n0, where the dimensionless Larmor
frequency wn is given by

wn = 2 γnBe√
γeGv

. (13)

Here, Be is the magnitude of the torque-averaged electron
magnetic field on the nucleus given below [12]:

B⃗e =
5µ0

16πR3 µ⃗e (14)

with µe = 9.285× 10−24 J/T.
To suppress high-frequency oscillations, Majorana defined

the following transformation of variables [6]:(
c1
c2

)
=

(
e−iτ 2

f
e+iτ

2
g

)
. (15)
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This transformation not only simplifies the mathemat-
ical derivation but also accelerates our numerical simulation
substantially.

Substituting equations (11)–(15) into equation (9) yields

d2f
dτ 2

− 4i

[
τ −

√
k1wn

4
(√

k1 − i
√
k0eiϕ n

)] df
dτ

+
(
k0 + k1 + 2

√
k0k1 sinϕ n

)
f = 0, (16)

where adiabaticity parameters k0 and k1 are defined as

k0 =
za
v γeG, (17)

k1 = γe
(Bn sinθn0)

2

Gv
. (18)

The initial conditions of equation (16) are f(−∞) = 1 and
f ′ (−∞) = 0 [6]. For each sampled (θn0,ϕ n0), the numerical
solution is conducted over a dimensionless time range −30<
τ ⩽ 60. Since the variation of f is negligible when the atom is
far before the null point, we consider the initial conditions as
f(−30) = 1 and f ′ (−30) = 0 in the numerical simulation.

Majorana reasoned that because the z-component of the
magnetic field is reversed along the flight path, the roles of
f and g in the quantification of spin flip are reversed [6]; the
justification that we found is the initial adiabatic flip when the
atom passes above the wire [12, 16]. Therefore, we compute
the final polar angle of µ⃗e using the final value of f through
| f |= sin(θe,f/2) [10], yielding θe,f = 2 arcsin | f |. Substituting
the final polar angles θe and θn into equation (1) predicts the
collapsed state measured by SG2. According to the branching
condition, the final orientation of µ⃗e is

θe,D =

{
0 if θe,f < θn,0
π if θe,f > θn,0

. (19)

We sample N= 2× 104 sets of (θn0,ϕ n0) and statistically
calculate the fraction of µ⃗e that collapse to |+z⟩ . The fraction
of spin flip is given by

Wnum = 1
N

N∑
j=1

[
θ je,D = 0

]
. (20)

The Iverson bracket takes on 1 when the statement inside
the bracket is true and 0 otherwise. Our source code written
in Wolfram Mathematica is provided both in appendix A and
online [18].

3. Results

Figure 2 demonstrates the solutions of | f(τ)| versus τ with
different wire currents for an example pair of (θn0,ϕ n0). The
electron magnetic moment rotates its polar angle mostly near
the quadrupole null point, and | f(τ)| oscillates with a damping
amplitude thereafter. The final value of | f(+∞)| is estimated
by averaging | f(τ)| in the range 52< τ ⩽ 60.

Figure 2. Examples of | f(τ)| versus τ with different wire currents I
but the same initial orientation (θn0,ϕ n0) = (6π/7,0).

Figure 3. Simulated and experimental results for the fraction of
spin flip in the Frisch–Segrè experiment. Isotropic and anisotropic
distributions of the nuclear magnetic moment yield the coefficients
of determination of R2

isotropic =−0.26 and R2
anisotropic = 0.95,

respectively. The number of simulated atoms is 2× 104, leading to
error bars smaller than the size of the symbols.

Two probability density functions for µ⃗n are considered:
isotropic (pn, isotropic = 1/4π ) and anisotropic (pn,anisotropic =
(1− cosθn0)/4π ). These results are compared with the
Frisch–Segrè observation in figure 3. The isotropic dis-
tribution results in a negative coefficient of determination
R2
isotropic =−0.26, indicating poor agreement, whereas the

anisotropic distribution shows a high coefficient of determin-
ation R2

anisotropic = 0.95. Similarly, the coefficient of determ-
ination for the simulation using the Bloch equation [16]
is R2

Bloch = 0.95; the coefficient of determination for the
closed-form analytical solution [12] is R2

analytical = 0.96. The
numerical and the analytical results for the anisotropic case
are compared in figure B1 (see appendix B).
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4. Discussion and conclusion

The numerical model incorporates the CQD concept into the
Schrödinger equation [12]. The co-quantum µ⃗n remains con-
tinuous upon the collapse of µ⃗e, rather than becoming quant-
ized. In this simulation, we approximate the precession of
µ⃗n with a constant Larmor frequency. Solving the Bloch
equation with a variable Larmor frequency, which however
is numerically stiff, has led to similar agreement with the
experimental observation [16]. By contrast, Rabi’s quantum
mechanical formula based on a quantized isotropic distribu-
tion for the nuclear magnetic moment does not fully agree
with the experimental observation [12]. As shown in another
paper, the standard quantum mechanical treatment using the
von Neuman equation does not yet match the experimental
observation [19].

In conclusion, we demonstrate a numerical model for the
multi-stage Stern–Gerlach experiment by Frisch and Segrè
based on CQD. The collapse of electron magnetic moment in
SG1 according to the CQD branching condition leads to the
redistribution of the co-quantum. We apply the Monte Carlo
method to sample the co-quantum. With a Hamiltonian mod-
ified with the torque-averaged magnetic field from the co-
quantum, we use the Schrödinger equation to model the evol-
ution of the electron magnetic moment inside the IR chamber.
Then, the branching condition is applied to SG2 to quantify
the fraction of spin flip. Our numerical model closely predicts
the observation of the Frisch–Segrè experiment with no free
parameters.
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Appendix A. Source code in Mathematica

IwireList = List[0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5]; (∗current∗)
v = 800.; (∗velocity∗)
m0 = N[4.∗Pi∗1∗∧-7, 16]; (∗vacuum permeability∗)
R = 2.75∗∧-10; (∗atom radium∗)
mun = 1.97723∗∧-27; (∗nuclear magnetic moment∗)
mue = 9.28∗∧-24; (∗electron magnetic moment∗)
za = 1.05∗∧-4; (∗distance between wire and atom beam∗)
Be = N[5 m0 mue/(16 Pi∗R∧3), 16]; (∗magnetic field of mu_e∗)
Bn = N[5 m0 mun/(16 Pi∗R∧3), 16]; (∗magnetic field of mu_n∗)
gammae = 1.76085963∗∧11; (∗gyromagnetic ratio of electron∗)
gamman = 1.25∗∧7; (∗gyromagnetic ratio of nuclei∗)
Br = 0.42∗1.∗∧-4; (∗remnant magnetic field∗)
tN = 2051; (∗2051 time sequence; 20000 for plotting the smooth sequence∗)
pCQD4List = ConstantArray[0, 8]; (∗accumulated flipped spins∗)
S = 2000; (∗number of samplings∗)
numberOfNP = 1; n = 1; (∗usually they are 1∗)
taumin = -30; (∗dimensionless time start∗)
taumax = 60; (∗dimensionless time end∗)
tauList = taumin + Range[tN]/tN∗(taumax - taumin); (∗time sequence∗)
SEListManual = ConstantArray[0, {S, 8}]; (∗initialize the spin flip∗)
fList = ConstantArray[0, {tN - 1, 8}]; (∗initialize the time sequence∗)
Do[
sampleOrder = s; (∗sample order, s from 1 to 2000∗)
w2plotMatrix = ConstantArray[0, {numberOfNP, 8}]; (∗initial spin flip for one sampled atom∗)
length = (Range[numberOfNP])/numberOfNP;

Do[len = length[[m]];
Do[Iwire = IwireList[[j]];
PflipCQD4 = 0;
Do[thn = 2∗ArcSin[(RandomReal[])∧(1/4)];
(∗sample polar angle of the nuclear magnetic moment, the example is the anisotropic distribution∗)
phia = RandomReal[]∗2 Pi; (∗azimuthal angle mu_n∗)
G = 2 Pi (Br)∧2/(m0∗ Iwire); (∗G quadrupole gradient∗)
k0 = Abs[gammae]∗za∧2/v∗ G; (∗k0∗)
k1 = Abs[gammae]∗(Bn Sin[thn])∧2/(G v); (∗k1∗)
\[Alpha] = 1/2∗Sqrt[Abs[gammae ] G v]; (∗ratio between time and dimensionless time∗)
tNP = Bn Cos[thn]/(G v); (∗time when atom reaches the null point∗)
fInitial = 1; (∗initial condition∗)
DfInitial = 0; (∗initial condition ∗)
Do[
tau1 = tauList[[q]]; (∗time step q∗)
tau2 = tauList[[q + 1]]; (∗time step q+1∗)
\[Omega]n = Abs[gamman]∗Be; (∗precession frequency of mu_n∗)
wn = \[Omega]n /\[Alpha]; (∗dimensionless precession frequency∗)
phin = wn∗tau + phia; (∗azimuthal angle of mu_n∗)
sparam1 = NDSolve[{
f1 ′′[tau] == ((Sqrt[k1] wn / (I Sqrt[k1] + Sqrt[k0] Exp[I (phin)])) +
4 I (tau)) f1 ′[tau] - (k1 + k0 + 2 Sqrt[k0 k1] Sin[phin]) f1[tau],
f1[tau1] == fInitial, f1 ′[tau1] == DfInitial},

f1,
{tau, tau1, tau2},

Method -> Automatic,
PrecisionGoal -> 10,
AccuracyGoal -> 10, InterpolationOrder -> All,
WorkingPrecision -> MachinePrecision, MaxSteps -> Infinity]; (∗Schrodinger equation∗)
fList[[q, j]] = Max[Abs@f1[tau1] /. sparam1]; (∗time sequence at q's step for j's current∗)

6
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fInitial = Max[f1[tau2] /. sparam1];
DfInitial = Max[f1 ′[tau2] /. sparam1], {q, 1, tN - 1}];
getFfinal = Mean[fList[[tN - 187 ;; tN - 1, j]]]; (∗average f∗)
thetaE = Re[2 ArcSin[getFfinal]]; (∗calculate the polar angle of mu_n∗)
getCQDflipover = Evaluate[(Sign[thetaE - thn] + 1)/2]; (∗branching condition equation (1)∗)
PflipCQD4 = getCQDflipover + PflipCQD4, {i, 1, n}];
pCQD4List[[j]] = PflipCQD4/n∗100; (∗probability in %∗)
, {j, 1, 8}];
w2plotMatrix[[m]] = pCQD4List, {m, 1, numberOfNP}];
fileOrder = 1; (∗usually equals to 1∗)
SEListManual[[sampleOrder + 1, All]] = w2plotMatrix[[fileOrder]];
, {s, 0, S - 1} ]

(∗Plot∗)
SEresults =
ListLogLinearPlot[Transpose@{IwireList, (Mean[SEListManual])},
PlotLegends -> {"SE Results"}, PlotStyle -> Blue,
PlotMarkers -> "O", Joined -> True];

7
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Appendix B. Comparison to the analytical solution

Figure B1. The comparison between the anisotropic result and the
analytical solution [12].
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