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Exact Frequency-Domain Reconstruction for
Thermoacoustic Tomography—I: Planar Geometry

Yuan Xu, Dazi Feng, and Lihong V. Wang*

Abstract—We report an exact and fast Fourier-domain re-
construction algorithm for thermoacoustic tomography in a
planar configuration assuming thermal confinement and constant
acoustic speed. The effects of the finite size of the detector and
the finite length of the excitation pulse are explicitly included in
the reconstruction algorithm. The algorithm is numerically and
experimentally verified. We also demonstrate that the blurring
caused by the finite size of the detector surface is the primary
limiting factor on the resolution and that it can be compensated
for by deconvolution.

Index Terms—Fourier-domain reconstruction, planar, thermo-
acoustic tomography.

I. INTRODUCTION

USING thermoacoustic tomography (TAT) to image bio-
logical tissues has two primary advantages. The first is

the high spatial resolution comparable with pure ultrasound
imaging. The second advantage results from the large contrast
in microwave absorption that exists between cancerous tissue
and the normal tissue [1]–[7]. Reviews of TAT and related
works [8]–[17] can be found in [11] and [18].

Various reconstruction algorithms for TAT [8], [9], [16], [18],
[19] have been reported. Under the approximation that the dis-
tance between the detector and the absorbing object is much
larger than the dimension of the absorbing object, a three-di-
mensional (3-D) Radon transform was applied to reconstruct
the object in TAT [8]. However, the fact that this approxima-
tion may not always hold in real-world situations limits the ap-
plication of this method. Further, the spatial resolutions of the
imaging system using this reconstruction method are limited by
blurs [20] caused by the finite size of the transducer surface,
the finite width of the stimulating pulse, and the finite band-
width of the transducers and amplifiers. Among these effects,
the blur from the size of the transducer surface is expected to be
the largest contributor to the total blur. The analysis of error is
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limited in numerical simulations, and, hence, no analytical form
was available prior to this work. A time-domain beam-forming
technique was applied in one study to image reconstruction for
the photoacoustic scanning of tissue structures [9]. A weighted
delay-and-sum algorithm was used to account for the near-field
effect and to reduce noise. This algorithm is an approximate one,
and its lateral resolution is limited by the size of the detector sur-
face. The above reconstructions were implemented in the time
domain and consequently are time-consuming, especially in 3-D
tomography. TAT was also obtained in a way similar to that used
in conventional B-scan ultrasonic imaging, but it had difficulty
detecting the boundaries of objects that are oblique to the trans-
ducer axis [16]. Exact reconstructions have been implemented
for TAT in spherical and cylindrical configurations in the com-
panion papers [18], [19].

Next, we present our studies on an exact and fast reconstruc-
tion algorithm using a Fourier transform for TAT in a planar
configuration. The reconstruction of an image by Fourier trans-
form has been used in X-ray computed tomography [21], ul-
trasonic reflectivity imaging [22]–[24], and diffraction tomog-
raphy [25] successfully. The computation complexity is reduced
greatly due to the efficiency of the Fourier transform. We devel-
oped image reconstruction by Fourier transform for planar TAT
and obtained an exact reconstruction algorithm for the first time.
Furthermore, some limitations from experiments, such as the ef-
fects of the finite size of the detectors and the finite length of the
excitation pulse, are included explicitly in the reconstruction al-
gorithm. The reconstruction algorithm is verified by both nu-
merically simulated and experimental results. Our simulations
also demonstrate that the blur due to the finite size of the de-
tector surface, which is a key limiting factor on the resolution
of images [9], [20], can be alleviated by deconvolution with re-
spect to the size of the detector surface. Other effects that may
cause blurring of images can be treated in a similar way. In our
initial experiments, an image in good agreement with the real
objects was reconstructed and the deconvolution improved the
resolution of the imaging system.

II. M ETHODS

A. Image Reconstruction

Assume that the detector scans within the plane and
that the object is distributed only in the half space .
In order to obtain a spatial resolution of about 1 mm, the mi-
crowave pulse should be set to less than1 s because the
speed of sound in soft biological tissue is1.5 mm/ s. For
these parameters, the diffusion term in the heat conduction equa-
tion is about six orders of magnitude less than the term of the
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first-derivative of the temperature [26]. Therefore, heat conduc-
tion can be ignored. This is known as the assumption of thermal
confinement. In this case, the acoustic wave is related to
microwave absorption by the following wave equation
[26]:

(1)

where , is the acoustic speed, is the specific heat,
and is the coefficient of volume thermal expansion. In (1), the
acoustic speed is assumed constant, which will be further ad-
dressed in the discussion section. Equation (1) can be rewritten
in terms of :

(2)

where . The source term can further be
written as the product of a purely spatial and a purely temporal
component, i.e.,

(3)

where is a scaling factor proportional to the incident radiation
intensity, describes the microwave absorption properties
of the medium at . describes the shape of the irradiating
pulse and is a nonnegative function whose integration over time
equals the pulse energy. Substituting (3) into (2) results in

(4)

We proceed by transforming the time-dependent wave equa-
tion into the temporal-frequency domain. Denoting the Fourier
transforms of and by and , we have

(5)

(6)

Substituting (5)and (6) into (4) results in

(7)
If the acoustic signals are collected along a line or in a plane,
for example at , following the line of Nortan and Linzer
in [22], it can be shown that for the case and

(8)

where , is the signum function

(9)

and

(10)

Equation (8) can further be simplified to

(11)
where

(12)

The lower limit of the above integration is changed from 0 to
because when . Equation (11) gives

an exact mapping relation between the spectrum of the collected
signals and the spectrum of the distribution of microwave en-
ergy deposition and is the essence of our reconstruction method.
However, (11) stands only if the acoustic detector is a point de-
tector. In practice, the detector is of finite size, whose surface
shape can be described by . The signal from the detector

can be expressed as an integral of the acoustic wave
over the detector surface

(13)

After transforming (13) into the temporal- and spatial-frequency
domain, we have

(14)

where is the temporal and spatial Fourier transform
of , and is the spatial Fourier transform of

. Substituting (14) into (11) results in

(15)

Mapping the space into the space by the
relation

(16)

yields an explicit expression for

(17)

At last, the distribution of the microwave energy deposition can
be reconstructed from by 3-D inverse Fourier transform.
Equation (17) gives an exact reconstruction algorithm for planar
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TAT for the first time. Furthermore, the effects of the finite size
of the detectors and the finite length of the excitation pulse are
included explicitly. From (17), it can be inferred that the re-
constructed image spectrum from the experimental
data without the consideration of these two effects, as was pre-
sented by previous researchers [9], [20], is related to the actual
image spectrum by

(18)

Both of the effects result in multiplications of a function to the
actual image spectrum in the frequency domain. They are equiv-
alent to convolutions in the spatial domain, which blur the re-
constructed image. However, given the pulse shape and the sur-
face configuration of the detector surface, the two effects can be
reduced by deconvolution.

To summarize, the reconstruction procedure consists of the
following steps.

1) The signal from the detector is Fourier trans-
formed with respect toto yield . Deconvolu-
tion with respect to the finite pulse length can be imple-
mented immediately after the Fourier transform.

2) is Fourier transformed with respect toand
, yielding .

3) According to (16) and (17), is mapped to
.

4) is deconvoluted with respect to the finite size
of the detector, giving .

5) is inversely Fourier transformed with respect
to to yield .

The order of steps 4) and 5) can be exchanged so that more stable
deconvolution algorithms can be applied. In numerical calcula-
tions, is obtained only at discrete points; hence the
mapping from to needs interpolation,
which can be a major source of distortion.

B. System Setting

The experimental setup was reported in [27] and, for con-
venience, is only briefly described here (Fig. 1). Theaxis
points perpendicularly to the drawing plane; theaxis points
to the right in the plane; and theaxis points downward along
the acoustic axis. Microwave pulses are transmitted by a 9-GHz
microwave generator. The pulse width is 0.5s. The object to
be imaged is a cylinder of pork fat containing a thin layer of
connective tissue and six yellow microstructures. The diameter
of the cylinder fat is 14 mm and the length in thedirection
30 mm. The cylinder was immersed in mineral oil in a plexi-
glass tank. The central frequency of the ultrasonic transducer
(Panametrics) is 2.25 MHz; the bandwidth 1.8 MHz; and the
diameter of the active element 6 mm. More details about the
system can be found in [27].

III. RESULTS AND DISCUSSION

Our method was applied to reconstructing images from both
the simulated and the experimental data in a two-dimensional
(2-D) case, where the imaged objects were uniform along the

Fig. 1. Experimental setup for TAT.

axis. Because the blur due to the finite size of the detector sur-
face is a limiting factor on the resolution of images, we demon-
strated how deconvolution with respect to the detector surface
can deblur the images. We chose the 2-D case here because both
the computational and experimental complexity can be reduced
more in the 2-D case than in the 3-D one. Nevertheless, the ex-
tension of the conclusions of the 2-D case to the 3-D one is
straightforward.

A. Simulation

The thermoacoustic imaging of two cylinders was numeri-
cally simulated. Cylinders were chosen because the analytical
expression for their thermoacoustic signal is available [28]. In
the simulations, the temporal-frequency range was from near
0 to 1.5 MHz, which was in accordance with the experimental
one and with our previous experiments [11]. Two simulations
were run. The first one was to test our reconstruction algorithm
under an ideal experimental condition, which is noiseless and
does not consider any experimental limitations on the detectors.
In the second case, the effect of the finite size of the detectors on
the imaging was studied while noise was also added. Deconvo-
lution with respect to the finite size of the detector surface was
applied to improve the lateral resolution of the blurred image.
Since energy deposition is a positive value, only the positive
components of the reconstructed image were retained, and the
others were set to zero.

In step 3) of the reconstruction, which is the mapping from
to , linear interpolation was applied.

By adopting the zero-padding technique [25] for the time-do-
main data, one can increase the sampling density in the-space
and, consequently, obtain a better performance of the interpo-
lation in the -space. In the reconstruction from the simulation
data and experimental data, we appended to the end of the data
the same number of zeros as in the original collected data, so that
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Fig. 2. The reconstructed image of the cross-section of two cylinders with a
radius of 2 mm and the centers separated by 5.5 mm under ideal experimental
conditions.

the sampling density in the-space was doubled. By utilizing
the Wiener filtering method [29], deconvolution with respect to
the finite pulse length was implemented immediately after the
Fourier transform with respect to time in step 1). As the decon-
volution with respect to the finite size of the detector surface is
much more unstable than the deconvolution with respect to the
finite pulse length, we have tried two methods of deconvolution:
the Wiener filtering method and the piecewise polynomial trun-
cated singular value decomposition (PP-TSVD) [30] method.
The first method can be implemented in the spatial-frequency
domain and is more computationally efficient than the second,
but the performance of the second method is much better, as it
can restore sharp boundaries blurred by the convolution while
avoiding the appearance of artificial oscillations in an unstable
deconvolution. Therefore, we adopted the PP-TSVD method to
process the images. Since the models in our simulation and ex-
periment were uniform along theaxis, one-dimension decon-
volution was applied.

Fig. 2 shows the reconstructed image from the simulated data
under the ideal experimental condition, where the radius of the
two cylinders was 2 mm; the distance between the centers of
the cylinders was 5.5 mm; the centers of the cylinders were po-
sitioned in the plane of mm; the scanning range of the
detector along the axis was 90 mm with a step size of 0.5 mm;
and the thermoacoustic signals were sampled for 40s at a sam-
pling rate of 50 MHz. The reconstructed image is in good agree-
ment with the real objects, whose outlines are plotted as dotted
circles in Fig. 2. The dimension of the cylinders is 3.75 mm
along the direction and 4.7 mm along the direction. The
cylinder is a little deformed laterally, which is due to the finite
scanning range of the detector.

Fig. 3 shows the images before and after deconvolution with
respect to the finite size of the detector surface in a case similar
to our experimental conditions. The noise was added to the ther-
moacoustic signals, and the signal-to-noise ratio (SNR) was 50;
the diameter of the detector was 6 mm. All of the other param-
eters were the same as those in the first case. The image before
deconvolution is shown in Fig. 3(a). The dimension of the im-
ages of the objects is 3.5 mm along theaxis, which agrees well
with the real one, 4 mm. However, along theaxis, the images

Fig. 3. The reconstructed images for the same two cylinders as in Fig. 2 from
noisy data (a) before and (b) after the deconvolution with respect to the detector
surface.

of the two cylinders were blurred and consequently merged into
one, which is predicted by our analysis of the effect of the fi-
nite size of the detector. The image shows no clear boundaries
of the objects along the axis. After deconvolution, the lateral
boundaries of the objects become very clear and the width of
the objects in Fig. 3(b) is 4.1 mm, which is quite close to reality.
Furthermore, the two objects can be distinguished clearly. After
comparing Fig. 3(a) with (b), it seems that the ghost images be-
come slightly more obvious, which is a disadvantage of decon-
volution. Nevertheless, it is obvious that deconvolution with re-
spect to the finite size of the detector surface can improve the
lateral resolution greatly.

In Figs. 2 and 3, there are some ghost images. In principle,
our reconstruction method is exact under the assumption of
thermal confinement and constant acoustic speed. However,
several factors may introduce distortions. First, as mentioned
at the end of part Section II-A, the mapping from
to needs interpolation, which is a major source
of distortion. This distortion can be reduced by increasing
sampling time or applying a better interpolation algorithm
in the mapping. Second, in experiments, the detector cannot
be scanned over the whole plane. Nevertheless, Fig. 2 shows
that collecting data within a finite area of the collection plane
can produce images of sufficient definition to determine the
configuration and position of the objects.

B. Experimental Result

Fig. 4 shows the experimental result. The images before
and after deconvolution with respect to the finite size of the
detector surface are shown in Fig. 4(a) and (b), respectively.
Fig. 4(c) is the cross section of the biological tissue, which
was a cylinder with a radius of about 14 mm and 3 cm long. It
consisted of two parts of fat separated by a very thin layer of
connective tissue, which is labeled as (7) in the middle of the
sample. There were some yellow microstructures among the
fat, labeled from (1)–(6), respectively. Fig. 4(a) is the image
reconstructed from the experimental data before deconvolution.
The connective tissue between the two parts of fat and the
yellow microstructures are imaged clearly. The dimension
of the image is 16.4 mm along thedirection and 19.2 mm
along the direction. However, it is obvious that the image
before deconvolution is blurred along theaxis, which makes
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Fig. 4. The reconstructed images from the experimental data (a) before and
(b) after the deconvolution with respect to the detector surface; (c) the cross
section of a cylinder of fat sample containing six yellow microstructures labeled
from (1)–(6) and a layer of connective tissue in the middle labeled as (7).

the lateral boundaries unclear and the yellow microstructures
(1) and (2), (3) and (4) merge into one object, respectively.
The lateral resolution of the image needs to be improved.
Consequently, deconvolution with respect to the finite size of
the detector surface was applied to Fig. 4(a), and the result is
shown in Fig. 4(b). The lateral resolution of the image after
deconvolution is much improved. The merged objects can be
distinguished clearly, and the lateral boundaries of the cylinder
become much clearer. The dimension of the image is 16.4 mm
along the direction and 16.7 mm along thedirection.

C. Discussion

There are several advantages of our reconstruction method.
The first one is that it is an exact reconstruction algorithm.
Unlike other reconstruction methods for TAT that are approxi-
mate ones, our reconstruction method provides a solid base for
analyzing and improving the quality of reconstructed images.
Furthermore, the exact reconstruction method has a broader
application than the approximate ones. For example, in both
our simulation and experiment, the closest distance between the
objects and the detectors was only about 1 cm; this is possible
because in principle there is no limitation on the detector–ob-
ject distance in our method. In other words, the detector can
be placed very close to the object to ensure a better SNR.
The second advantage of our method is that it can explicitly
include the effect of many limitations from the experiment,
such as the finite size of detector surface, the microwave pulse

length, and the finite frequency response range of the detector.
Actually, these analyses are also valid for other approximate
reconstruction methods as long as the other reconstruction
methods are able to produce images approximating the real
objects. Consequently, our analysis of the blur caused by the
various experimental limitations can also be very useful for
eliminating the limitations in other reconstruction methods.
Lastly, since the reconstruction in our method is implemented
in the frequency domain, the efficiency of computation is much
better than the algorithm implemented in the time domain due
to the use of the efficient Fourier transformation in our method.
This is especially important for real-time 3-D imaging.

From the above images, it can be seen that there is no
speckle in the reconstructed image. Speckles are an important
factor limiting the quality of pure ultrasonic imaging. In our
technology, the detected signals are directly from the primary
acoustic waves rather than reflective or scattered waves.
Further, the temporal frequency of the acoustic signals lies in
a range from 0 to 1.5 MHz, which is only weakly scattered
in the tissues. The above two factors guarantee that there is
no obvious speckle in our experimental images. However,
the issue of image speckle in more realistic medical imaging
applications of our algorithm is a topic for future consideration.

The formulas in this paper are for TAT in planar geometry
only. However, for cylindrical geometry [19], we can predict
that the lateral resolution of images can also be improved by
deconvolution with respect to the detector surface, where the
deconvolution is carried out in a cylindrical surface instead of
a plane. For spherical geometry [18], similar work can be con-
ducted as well.

For many medical imaging applications, the acoustic speed
may not be constant. For example, the acoustic speed inside the
female breast may typically exhibit a 10% variation; however,
our simulation, to be reported elsewhere, showed that the image
distortion is relatively small.

IV. CONCLUSION

We developed a Fourier-domain reconstruction for TAT and
obtained an exact and fast reconstruction algorithm. The effects
of the finite size of the detectors and the finite length of the ex-
citation pulse were included explicitly in the reconstruction al-
gorithm. The reconstruction algorithm was verified by both nu-
merical simulations and experimental results. Our simulations
demonstrated that the blurring caused by the finite size of the
detector surface, which is a key limiting factor on the resolu-
tion of images, can be alleviated by deconvolution with respect
to the detector surface. Other effects that may cause the blur of
the images can be treated in a similar way. In the initial exper-
iment, an image in good agreement with the real objects was
reconstructed and the deconvolution improved the resolution of
the imaging system. The method can also be extended to other
configurations of data collection.
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