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Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically
scattering media

Sava Sakadzˇić and Lihong V. Wang*
Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University, 3120 TAMU, College Station, Texas 77843

~Received 14 March 2002; published 16 August 2002!

In this work, we have calculated analytically the temporal autocorrelation function of the electrical field
component of multiply scattered coherent light transmitted through an anisotropically scattering media irradi-
ated with a plane ultrasonic wave. The accuracy of the analytical solution is verified with an independent
Monte Carlo simulation for different values of the ultrasonic and optical parameters. The analytical model
shows that an approximate similarity relation exists; if the reduced scattering coefficient is unchanged regard-
less of the mean cosine of the scattering angle, the autocorrelation function remains approximately the same.
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I. INTRODUCTION

Recently ultrasound-modulated optical tomography
been established as a new and growing area of rese
Potential applications exist in the imaging of scattering m
dia, especially biological tissues. This technique combi
ultrasonic resolution and optical contrast based on the dif
ences in optical properties among different types of tissu
The collective motion of the scatterers and the period
changes in the index of refraction that are generated by
cused ultrasound produce fluctuations in the intensity of
speckles formed by the multiply scattered light. By meas
ing the depth of intensity fluctuations, we can spatially loc
ize differences in optical properties inside a scattering m
dium. Intensive research has been conducted by sev
groups in the past few years@1–12# in an attempt to explain
the mechanism of ultrasonic tagging of light and to deve
practical systems based on this new imaging modality. Ho
ever, additional work is needed to advance our understan
of this relatively new phenomenon.

In our simple model we will consider two basic mech
nisms that are responsible for variation in the optical ph
of multiply scattered light. With the first mechanism, th
variation in the phase is caused by ultrasound-induced
lective displacements of scatterers, which was modeled
the first time by Leutz and Maret@10#. With the second
mechanism, the variation in the phase is caused
ultrasound-induced variation of the index of refractio
which was modeled, in combination with the first mech
nism, by Wang@11,12#. The current models, however, a
based on nonabsorbing and isotropic scattering media ra
than the more realistic absorbing and anisotropic scatte
media.

In this paper we extend the solution for the temporal
tocorrelation function of the electrical field component o
tained in Ref.@11#, incorporating into the model a gener
scattering phase function. The organization of the paper i
follows. Section II describes the derivation of the autocor
lation function of the ultrasound-modulated electric fie
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along paths of lengths while the detailed derivations ar
deferred to the Appendix. In Sec. III we incorporate the e
pressions obtained in Sec. II into the solution for the to
electric field autocorrelation function transmitted through
scattering slab in the case of a plane source of coherent
and a point detector. We examine the accuracy of our a
lytical solution with an independent Monte Carlo simulatio
in Sec. IV. In Sec. V we use both the Monte Carlo simulati
as well as the analytical solution for the autocorrelation fu
tion to explore the validity of the similarity relation. In Se
VI, we present the dependence of the total electric field
tocorrelation function on the ultrasonic and optical para
eters including the ultrasonic frequency and amplitude
well as the scattering and absorption coefficient. Finally
brief summary of our conclusions is presented.

II. AUTOCORRELATION OF A SINGLE PATH LENGTH

Consider the propagation of coherent light through a
mogeneous scattering medium irradiated by a plane u
sonic wave. If we neglect all the polarization effects, t
temporal autocorrelation function of the electric field com
ponent of the scattered light at the point detector position
be written as follows:

G1~t!5^E~ t !E* ~ t1t!&. ~1!

We assume that the photon mean free path is much lon
than the optical wavelength~weak scattering! and the acous-
tic amplitude is much less than the optical wavelength.
this weak scattering approximation, the correlation betwe
different random paths vanishes and only the photons tra
ing along the same path of lengths produce a nonzero effect
Consequently, the autocorrelation function becomes@10,11#

G1~t!5E
0

`

p~s!^Es~ t !Es* ~ t1t!&U^Es~ t !Es* ~ t1t!&Bds,

~2!

wherep(s) is the probability density function of path lengt
s. In Eq.~2! we assume that the contributions from Browni
motion ~B! and ultrasound~U! are independent and that w
can separate them.
©2002 The American Physical Society03-1
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The remaining task in this section is to consider the ult
sound component of Eq.~2! when photon scattering is aniso
tropic. Following the derivations in Refs.@10,11#, the auto-
correlation for paths of lengths can be written as

^Es~ t !Es* ~ t1t!&U5K expH 2 i F (
j 51

N

Dfn, j~ t,t!

1 (
j 51

N21

Dfd, j~ t,t!G J L . ~3!

In Eq. ~3!, Dfn, j (t,t)5fn, j (t1t)2fn, j (t), wherefn, j (t)
is the phase variation induced by the modulated index
refraction along thej th free path andDfd, j (t,t)5fd, j (t
1t)2fd, j (t), wherefd, j (t) is the phase variation induce
by the modulated displacement of thej th scatterer following
the j th free path. Summation is going over allN free paths
andN21 scattering events along the photon path. Averag
is over time and over all the photon paths of lengths. When
the phase variation is small~much less than unity!, we can
approximate Eq.~3! with

^Es~ t !Es* ~ t1t!&U5exp@2F~t!/2#, ~4!

where the functionF(t) is

F~t!5K F (
j 51

N

Dfn, j~ t,t!1 (
j 51

N21

Dfd, j~ t,t!G2L . ~5!

Let us assume that the plane ultrasound waves propa
along theZ direction with wave vectorka5kaêa , whereˆ
indicates a unity vector, andka52p/la , wherela is the
ultrasonic wavelength. Along the photon path withN
free paths, the positions of theN21 scatterers are
r1 ,r2 , . . . ,rN21. We will associate each free path betwe
two consecutive scattering events with a vectorl j5r j

2r j 21 , (l j5 l j êj ). The expressions forDfn, j (t,t) and
Dfd, j (t,t) in terms of the ultrasound amplitudeA, back-
ground index of refractionn0, and the amplitude of the op
tical wave vectork0 are @11#

Dfn, j~ t,t!5~4n0k0Ah!sin~vat/2!sin@~1/2!kal j cosu j #

3~cosu j !
21 cos@ka•r j 211~1/2!kal j cosu j

2vat2vat/2#, ~6a!

Dfd, j~ t,t!5~2n0k0A!sin~vat/2!@~ êj 112êj !•êa#cos~ka•r j

2vat2vat/2!, ~6b!

where coefficienth depends on the acoustic velocity of th
materialva , the density of the mediumr, and the adiabatic
piezo-optical coefficient]n/]p: h5(]n/]p)rva

2 . In Eqs.
~6!, u j is the angle between the propagation directions of
light and ultrasound (cosuj5êa•êj ), andva52p f a , where
f a is the ultrasonic frequency.

Now we can express the functionF(t) from Eq. ~5! as
02660
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F~t!5K (
j 51

N

~Dfn, j~ t,t!!2L
t,P(s)

1K 2(
j 52

N

(
k51

j 21

Dfn, j~ t,t!Dfn,k~ t,t!L
t,P(s)

1K (
j 51

N21

@Dfd, j~ t,t!#2L
t,P(s)

1K 2 (
j 52

N21

(
k51

j 21

Dfd, j~ t,t!Dfd,k~ t,t!L
t,P(s)

1K 2(
j 51

N

(
k51

N21

Dfn, j~ t,t!Dfd,k~ t,t!L
t,P(s)

. ~7!

The averaging over timet of each term on the right side o
Eq. ~7! is an easy task, while the averaging over all t
allowed pathsP(s) of length s with N free paths is more
difficult. In order to simplify the probability density function
of a particular photon pathp( l1 , . . . ,lN), we will first make
some assumptions. The number of stepsN in each photon
path in the diffusion regime is much larger than unity. Co
sequently, even if the total path lengths is fixed, the corre-
lation between the lengths of free pathsl j is still weak. As a
result, we have

p~ l1 , . . . ,lN!5p~ l 1!p~ l 2!•••p~ l N!g~ ê1 , . . . ,êN!, ~8!

wherep( l j )5 l 21 exp(2l j /l) is the probability density for a
photon to travel a distancel j between two scattering event
andg(ê1 , . . . ,êN) is the probability density for the photon t
travel along the directionsê1 , . . . ,êN . Because the probabil
ity of scattering a photon traveling in directionêj into direc-
tion êj 11 is described with phase functionf (êj•êj 11), we
can write Eq.~8! as

p~ l1 , . . . ,lN!5ps~ ê1!)
j 51

N

p~ l j ! )
j 51

N21

f ~ êj•êj 11!, ~9!

whereps(ê1) is the probability density function of the star
ing photon directionê1 in the scattering medium. Note tha
we assumed the phase function does not depend on the
muth angle or the incident direction.

Using Eq.~9! as the probability density function and go
ing through some algebra~see the Appendix!, Eq. ~7! be-
comes

F~t!.
s

l
~2n0k0A!2 sin2S 1

2
vat D

3H h2~kal !2 Re@ Ĵ~ Î 2 Ĵ!21#0,01
1

3
~12g1!J ,

~10!
3-2
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where Re@ Ĵ( Î 2 Ĵ)21#0,0 represents the real part of the (0,
element of the matrixĴ( Î 2 Ĵ)21 and the elements of th
matrix Ĵ are defined as

Jm,n5gm
1/2gn

1/2A2m11

2
A2n11

2

3E
21

1

T~x!Pm~x!Pn~x!dx,

T~x!5
1

12 ikalx
, ~11!

wherePj (x) is a Legendre polynomial of orderj, andgj is
the j th Legendre polynomial expansion coefficient of t
scattering phase function@Eq. ~A2!#. Thus,g1 is equal to the
scattering anisotropy factorg, i.e., the average cosine of th
scattering angle. The value Re@ Ĵ( Î 2 Ĵ)21#0,0 is the limit of
the Re@ ĴQ( Î Q2 ĴQ)21#0,0 whenQ approaches infinity, where
ĴQ is the Q3Q matrix whose elements are defined by E
~11!.

We will rearrange the expression forF(t) to

F~t!5s~2n0k0A!2 sin2~vat/2!~dn1dd!, ~12!

where

dn5h2ka
2l Re@ Ĵ~ Î 2 Ĵ!21#0,0, dd5~12g!/~3l !.

III. AUTOCORRELATION FOR A SLAB: ANALYTICAL
SOLUTION

In this section, we will test the accuracy of our analytic
expression forF(t) from the preceding section with an in
dependent Monte Carlo simulation in the case of an infinit
wide scattering slab. Slab geometry has been considered
viously for various particular problems@10–16#. We will
solve Eq.~2! for anisotropically scattering and absorbing m
dia based on the expression for functionF(t) obtained in the
preceding section.

The Z axis of the coordinate system is perpendicular
the infinitely wide slab of thicknessL. The index of refrac-
tion of both the surrounding and scattering media isn0. A
plane ultrasonic wave propagates along the slab~in the X-Y
plane! and is assumed to fill the whole slab. At the sam
time, one side of the slab is irradiated by a plane electrom
netic wave, and a point detector measures the tempora
tocorrelation function of the electric field component on t
other side of the slab. By solving the diffusion equation
such geometry, it is possible to find a reasonably good
pression@11,13,16# for the photon path length probabilit
density functionp(s). We follow the derivation ofp(s) from
Refs. @11,13# by applying an infinite number of imag
sources and introducing extrapolated-boundary conditi
@13,16# to obtain the following expression:
02660
.

l

y
re-

-

e
g-
u-

r
x-

s

p~s!5K~s!(
i 50

` H @~2i 11!L02z0#

3expS 2
@~2i 11!L02z0#2

4Ds D2@~2i 11!L01z0#

3expS 2
@~2i 11!L01z0#2

4Ds D J , ~13!

K~s!5
1

2ApD

sinh~L0AmaD21!

sinh~z0AmaD21!
s23/2 exp~2mas!,

whereD5 l * /3 is the diffusion constant;L0 is the distance
between the two extrapolated boundaries of the slab;z0 is the
location of the converted isotropic source from the extra
lated incident boundary of the slab; andl * is the isotropic
scattering mean free path defined asl * 5 l /(12g). The dis-
tance between the extrapolated boundary and the corresp
ing real boundary of the slab isl * g(g50.7104). The con-
verted isotropic source is one isotropic scattering mean
path into the slab. Therefore,L05L12l * g, and z05 l * (1
1g).

Incorporating the influence of Brownian motion of sca
terers@10,14,15# and the expression forF(t), we can solve
the integration in Eq.~2! over s for the temporal autocorre
lation function:

G1~t!5C
sinh~z0A~SU1SB1ma!D21!

sinh~L0A~SU1SB1ma!D21!
,

C5sinh~L0AmaD21!/sinh~z0AmaD21!, ~14!

whereSB52t/(t0l * ) is the term due to Brownian motion
(t0 is the single-particle relaxation time!, andSU is the term
due to the ultrasonic influence

SU5 1
2 ~2n0k0A!2sin2~vat/2!~dn1dd!. ~15!

IV. MONTE CARLO SIMULATION

To provide an independent numerical approach, we mo
fied the existing public-domain Monte Carlo package@17#
for the transport of light in scattering media to sample t
autocorrelation function according to Eqs.~2! and ~3!. Be-
cause it would be very time-consuming to physically sim
late a point detector using the Monte Carlo code, we app
the principle of reciprocity in our simulation: the slab is i
luminated by a point source and the transmitted light is c
lected by a plane detector. The scattering angle of a photo
our Monte Carlo simulation is determined by the Henye
Greenstein phase function@18#, but it would be trivial to
extend it to any, analytically or numerically defined pha
function. For details of the Monte Carlo implementation, r
fer to Ref.@12#.

As a first comparison between our analytical solution a
the Monte Carlo simulation, we neglect both the optical a
sorption by settingma to zero and the Brownian motion ef
3-3
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fect by settingt0→`. In Eqs.~14! and ~15! we see that the
value of G1(t) oscillates between 1 att50 and the mini-
mum value att5p/va . The maximum variation ofG1(t) is
compared for different values ofkal while ka and the ratio
L/ l ~the number of mean free paths in a slab of thicknessL)
are kept constant. We repeat the test for several diffe
values of the scattering anisotropy factorg and the acoustic
amplitudeA.

The results are shown in Fig. 1. The analytical predictio
~solid lines in Fig. 1! fit the Monte Carlo calculations~empty
scatterers! very well. In general, increasing the value ofg
leads to a decreased maximum variation ofG1(t) due to a
decreased number of equivalent isotropic scattering ev
inside the slab. Further, a larger ultrasonic amplitude
creases the maximum variation of the temporal autocorr
tion function due to the larger movement of scattering c
ters and greater modulation of the index of refractio
Finally, the maximum variation grows in a slab geome
with kal due to the larger value of the productldn , while the
productldd remains unchanged. From Fig. 1 we see that
analytical model works well for a wide range ofkal even
when the anisotropy factor is nonzero.

V. SIMILARITY RELATION

In this section, we will explore a similarity relation usin
the verified analytical solution, rather than the numerical
lution shown previously@12#. In intensity-based photon
transport theory, there is a similarity relation@19#: if the
transport scattering coefficientms* @5ms(12g)# remains
constant when the scattering coefficientms and the scattering
anisotropy factorg vary, the spatial distribution of light in-
tensity will be approximately the same. The similarity re
tion @ms* 5ms(12g)# can be rewritten asl * 5 l /(12g),
wherel * is the isotropic scattering mean free path. Here,

FIG. 1. Thekal dependence of the maximum variation of th
time autocorrelation function whileka is kept constant. Different
lines are for different values of the scattering anisotropy factog
and the acoustic amplitudeA. Empty symbols indicate the Mont
Carlo results:h(g50.9, A50.1 Å), n(g50, A50.1 Å), s(g
50.9, A53.5 Å), ,(g50, A53.5 Å). Solid lines indicate the
analytical results. Filed symbols indicate the analytical results
well, but by using the similarity relation. The following paramete
are used in the calculations:L/ l 5127.35, the wavelength of lightin
vacuois l05500 nm,n051.33, f a51 MHz, va51480 m/s, and
h50.3211.
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will examine the counterpart of this conventional similari
relation in the ultrasonic modulation of coherent light.
other words, we will compare two cases:~1! the scattering
coefficient isms and the scattering anisotropy factor isg and
~2! the scattering coefficient isms* @5ms(12g)# and the
scattering anisotropy factor is zero. In the following text, t
symbols with * indicate case~2!.

In Eq. ~12! we see that the values ofdd for both the cases
are exactly the same (dd5dd* ). On the other hand, the matri

Ĵ for the isotropic case~2! reduces to only one number:x
5arctan(kal* )/(kal* ) and we havedn* 5h2ka

2l * x/(12x)

@11#. However, the matrixĴ for the general case~1! is quite
complicated, and a direct analytical comparison with case~2!
is difficult. Instead, we will plot the relative error betwee
the two cases.

From Fig. 2~a!, we see that the discrepancy betweendn*
anddn is not very large~less than 13 percent!, even when the
scattering anisotropy factorg is 0.9. The error grows withg
and has a maximum aroundkal * 52. Because thedd part of
the sumd5dn1dd is unchanged by the similarity transfo
mation, the relative difference betweend* and d is even
smaller. From Fig. 2~b! we see that the relative error ofd* is
less than 8% M/u. The validity of the similarity relation ca
also been seen in Fig. 1~Sec. IV!.

In conclusion, with a relatively small error, we can app
the similarity relation in the calculation of the temporal a
tocorrelation function under the conditions we conside
during the derivation ofF(t) andG1(t).

VI. DEPENDENCE ON ULTRASONIC AND OPTICAL
PARAMETERS

In this section we will explore the dependence of the a
tocorrelation function on the ultrasonic and optical para

s

FIG. 2. Relative error of~a! dn* , and ~b! d* for different kal *
andg values. Lines (*,s,1,h,n) represent respectively~0.1, 0.3,
0.5, 0.7, 0.9! values of the scattering anisotropy factorg.
3-4
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FIG. 3. Dependence of the
maximum variation of the tempo
ral autocorrelation function on dif-
ferent ultrasonic and scattering pa
rameters. Solid lines represent th
analytical predictions and symbol
represent the Monte Carlo result
~a! Dependence on the absorptio
coefficient at different values o
ultrasonic frequency and ampli
tude.~b! Dependence on the ultra
sonic frequency at different value
of ultrasonic amplitude.~c! De-
pendence on the ultrasonic ampl
tude at different values of ultra
sonic frequency.~d! Dependence
on the scattering coefficient at dif
ferent values of ultrasonic fre
quency and amplitude. The fol
lowing parameters are used i
the calculation:va51480 m/s,h
50.3211, n051.33, L52 cm,
ms520 cm21 @except in~d!#, ma

50 @except in~a!#, andg50.
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eters in a slab geometry@Fig. 3#. Since it has been show
that the similarity relation can be applied successfully wh
scattering is anisotropic, we consider only isotropic scat
ing. In all the cases we neglect Brownian motion and cal
late the value of 12G1(t) at one half of an ultrasonic perio
~solid lines in Fig. 3! according to the analytical solutio
@Eq. ~14!#. The symbols represent the Monte Carlo result

Figure 3~a! shows that the maximum variation deca
when the absorption coefficient increases. This is becau
higher absorption coefficient reduces the fraction of phot
of long path length reaching the detector. Because th
long-path-length photons contribute most to modulation,
maximum variation decreases.

Figure 3~b! shows that the maximum variation increas
with acoustic frequency. This is because a higher acou
frequency leads to a higher ratio between the scattering m
free path and the ultrasonic wavelength, which increases
contribution from the index of refraction (dn) but has no
effect on the contribution from displacement (dd).

Figure 3~c! shows that the maximum variation increas
with the acoustic amplitude. A greater ultrasonic amplitu
increases the maximum variation by increasing both the s
terer displacement (dd) and the index of refraction (dn).

Figure 3~d! shows that the maximum variation increas
with the scattering coefficient. This is because an increas
the scattering coefficientms leads to a smaller value of th
photon mean free path and a higher number of photon s
terings along the paths. A higher number of photon scat
ings along the paths produces a higher maximum variatio
the autocorrelation function.

In all the cases, we tried to present situations with a sm
maximum variation ~choosing small amplitude and fre
quency of ultrasound! as well as situations when the max
mum variation is near unity~usually when the ultrasoun
amplitude or frequency is high!. In all these cases, the an
02660
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lytical predictions fit the Monte Carlo results well. Howeve
the error of the analytical prediction grows when the ma
mum variation is large and when the average number of p
ton steps along the paths is small. The data is in agreem
with our assumptions made during the derivation ofF(t),
i.e., the accumulated phase change along the photon pat
small enough to apply the approximation between Eqs.~2!
and ~4!, and that we are in the diffusion regime, which w
necessary for the derivation ofF(t) in the Appendix, as well
as for the derivation of the photon path-length probabil
density@Eq. ~13!#.

VII. CONCLUSION

In conclusion, we have presented an analytical solut
for the autocorrelation function of an ultrasound-modula
electric field along a path withN scatterers when scattering
anisotropic. A further analytical solution was found for th
light transmitted through a scattering slab using a pla
source and a point detector. Using a Monte Carlo simulat
we verified the accuracy of the analytical solution. We a
tested the similarity relation and showed that it can be u
as a good approximation in the calculation of the autoco
lation function. Finally, we presented the dependence of
maximum variation of the autocorrelation function on diffe
ent ultrasonic and optical parameters. In general, increa
ultrasonic amplitude or frequency and increasing the sca
ing coefficient leads us to a larger maximum variation wh
increasing the absorption coefficient leads us to a sma
maximum variation. Our analytical solution is valid und
the following conditions: diffusion regime transport, a sm
ultrasonic modulation, and when the value ofkal is not too
small.
3-5
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APPENDIX

The averaging over time of each term on the right side
Eq. ~7! and over the lengthsl j of all free paths produce

K (
j 51

N

@Dfn, j~ t,t!#2L
t,l j

5
1

8
~4n0k0Ah!2 sin2S 1

2
vat D

3~kal !2(
j 51

N

@T~xj !1T* ~xj !#,

~A1a!

K 2(
j 52

N

(
k51

j 21

Dfn, jDfn,kL
t,l j

5
1

8
~kal !2~4n0k0Ah!2 sin2S 1

2
vat D

3(
j 52

N

(
k51

j 21 S )
m5k

j

T~xm!1 )
m5k

j

T* ~xm!D ,

~A1b!

K (
j 51

N21

@Dfd, j~ t,t!#2L
t,l j

5
1

2
~2n0k0A!2 sin2S 1

2
vat D (

j 51

N21

~xj 112xj !
2,

~A1c!

K 2 (
j 52

N21

(
k51

j 21

Dfd, jDfd,kL
t,l j

5
1

2
~2n0k0A!2 sin2S 1

2
vat D (

j 52

N21

(
k51

j 21 H @~ êj 112êj !•êa#

3@~ êk112êk!•êa#S )
m5k11

j

T~xm!

1 )
m5k11

j

T* ~xm!D J , ~A1d!

K 2(
j 51

N

(
k51

N21

Dfn, jDfd,kL
t,l j

5
1

2
kal ~2n0k0A!2h sin2S 1

2
vat D

3F (
j 51

N21

(
k5 j

N21

~xk112xk!S )
m5 j

k

T~xm!1 )
m5 j

k

T* ~xm!D
1(

j 52

N

(
k51

j 21

~xk112xk!
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f S )
m5k11

j

T~xm!1 )
m5k11

j

T* ~xm!D G , ~A1e!

whereT(xm)51/(12 ikalxm), T* (xm) is its complex conju-
gate, i is an imaginary unit, and we use a variablexm to
represent cosum.

In order to provide averaging over all scattering dire
tions, as a first step we expand the phase function for
polar anglef (cosu) over Legendre polynomials,

f ~cosu!5 (
m50

`
2m11

2
gmPm~cosu!,

gm5E
0

p

f ~cosu!Pm~cosu!sinudu,

~A2!

where cosu represents the cosine of the deflection angle.
Notice that in Eq.~A2! g051, and g1 is equal to the

scattering anisotropy factorg. In the case of Henyey-
Greenstein phase function for the polar angle@18#, the value
of each coefficientgm is the mth power of the scattering
anisotropy factor (gm5gm). Because the azimuth angles a
uniformly distributed, the phase function for both the a
muth and polar angles are simply the polar phase func
multiplied by a constant factor (2p)21.

In our case, the argument of the phase function is
cosine of the angle between the incoming and outgoing p
ton direction (êj•êj 11). The unity vectorêj in a spherical
coordinate system has a formêj5cosujêa1sinuj coswjêx

1sinuj sinwjêy , and the argument of the phase function
this representation becomes

cosu5cosu jcosu j 111sinu jsinu j 11cos~w j2w j 11!.
~A3!

Using the identity@20#

Pn„xy2A12x2A12y2cos~a!…5Pn~x!Pn~y!

12(
k51

n
~21!k cos~ka!~n2k!!

~k1n!!
Pn

k~x!Pn
k~y!,

~A4!

and representingx, y, and a with cosuj , cosuj11, and p
1w j2w j 11, we first provide integration over all uniformly
distributed azimuth angles in Eqs.~A1!. Because in Eqs
~A1! nothing depends on the azimuth angle, all terms w
associate Legendre polynomialsPn

k() in Eq. ~A4! vanish dur-
ing the integration. Thus, for the further integration over t
polar angles, the probability density function of the photon
travel along the directionsê1 , . . . ,êN reduces to the function
f (N)(cosu1, . . . ,cosuN), which depends only on the pola
angles along the photon path:
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f (N)~cosu1 , . . . ,cosuN!

5 p̃s~cosu1! )
j 51

N21

f (2)~cosu j ,cosu j 11!,

~A5a!

f (2)~cosu j ,cosu j 11!

5 (
m50

`
2m11

2
gmPm~cosu j !Pm~cosu j 11!,

~A5b!

where p̃s(cosu1) is the probability density function of the
starting polar angle. For simplicity, we assumep̃s(cosu1)
51/2 ~uniform distribution! instead of the actual anisotrop
phase function, which was shown not to affect the final res
in the diffusion regime.

Using the orthogonality of Legendre polynomials, now
is straightforward to obtain the following equations:

H j~xj 21 ,xj 11!5E
21

1

f (2)~xj 21 ,xj !T~xj ! f (2)~xj ,xj 11!dxj

5 (
m50

`

(
n50

`

gm
1/2gn

1/2A2m11

2
A2n11

2

3Jm,nPm~xj 21!Pn~xj 11!, ~A6a!

^T~xj !&xi
5E

21

1

•••E
21

1

T~xj ! f (N)~x1 , . . . ,xN!dx1•••dxN

5~ Ĵ!0,0, ~A6b!

K )
m5k

j

T~xm!L
xi

5E
21

1

•••E
21

1 S )
m5k

j

T~xm!D
3 f N~x1 , . . . ,xN!dx1•••dxN

5 (
i (1)50

`

••• (
i ( j 2k)50

`

J0,i (1)Ji (1),i (2)•••Ji ( j 2k),0

5~ Ĵ j 2k11!0,0, ~A6c!

whereĴ is the matrix defined by

Jm,n5g
m

1/2gn
1/2A2m11

2
A2n11

2 E
21

1

T~x!Pm~x!Pn~x!dx,

~A7!

and the (Ĵ)0,0 represents the (0,0) element of the matrixĴ.
Thus, the average of the right side of Eq.~A1a! over all

the polar angles becomes
02660
lt

K (
j 51

N

@Dfn, j~ t,t!#2L
t,l j ,xi

5
1

8
~4n0k0Ah!2 sin2S 1

2
vat D

3~kal !2N@~ Ĵ!0,01~ Ĵ* !0,0#.

~A8!

On the other hand, the average of the right side of
~A1b! has a more complicated form:

K 2(
j 52

N

(
k51

j 21

Dfn, jDfn,kL
t,l j ,xi

5
1

8
~kal !2~4n0k0Ah!2 sin2S 1

2
vat D

3(
j 52

N

(
k51

j 21

@~ Ĵ j 2k11!0,01~ Ĵ* j 2k11!0,0#. ~A9!

If we replace the sums on the right-hand side of Eq.~A9!
with

(
j 52

N

(
k51

j 21

~ Ĵ j 2k11!0,05$Ĵ2~ Î 2 Ĵ!21

3@~N21! Î 2 Ĵ~ Î 2 ĴN21!

3~ Î 2 Ĵ!21#%0,0, ~A10!

and further keep only the terms that are proportional to
large numberN in the above equation, we have

K 2(
j 52

N

(
k51

j 21

Dfn, jDfn,kL
t,l j ,xi

.N
1

8
~kal !2~4n0k0Ah!2 sin2S 1

2
vat D

3@ Ĵ2~ Î 2 Ĵ!211 Ĵ* 2~ Î 2 Ĵ* !21#0,0. ~A11!

Joining Eqs.~A8! and ~A11!, we finally have

K (
j 51

N

@Dfn, j~ t,t!#212(
j 52

N

(
k51

j 21

Dfn, jDfn,kL
t,l j ,xi

.N
1

4
~kal !2~4n0k0Ah!2 sin2S 1

2
vat D

3Re@ Ĵ~ Î 2 Ĵ!21#0,0, ~A12!

where Re is for thereal value.
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The remaining task is to provide the average of the ri
hand side of Eqs.~A1c!, ~A1d!, and ~A1e!, over all polar
angles. As a first step, we define the coefficientFm,n for any
function F(x), and for each pair of nonnegative integ
numbers (m,n):

Fm,n

5E
21

1 A2m11

2
A2n11

2
gm

1/2gn
1/2F~x!Pm~x!Pn~x!dx.

~A13!

Then, according to the definition in Eq.~A13!, it is easy to
show that for the functionsx, x2, T(x), andxT(x) we have

~x!0,j5d1,jAg1/3, ~A14!

~x2!0,051/3,

@xT~x!#0,j5~ ikal !21~T0,j2d0,j !,

Tj ,15~ ikal !21A3g1~T0,j2d0,j !,

whereda,b represents the delta function.
Using the results in Eq.~A14!, the average over all the

polar angles of the right-hand side of Eq.~A1c! becomes

K (
j 51

N21

@Dfd, j~ t,t!#2L
t,l j ,xi

5
1

2
~2n0k0A!2 sin2S 1

2
vat D

3~N21!
2

3
~12g1!. ~A15!

On the other hand, the average of the right-hand side
Eq. ~A1d! is

K 2 (
j 52

N21

(
k51

j 21

Dfd, jDfd,kL
t,l j ,xi

5~2n0k0A!2 sin2S 1

2
vat D

3~12g!2~kal !22 Re@M̂ #0,0, ~A16!

whereM̂5 ĴN222 Î . Since the right-hand side of Eq.~A16!
is not proportional toN, we consider it much smaller than th
right side of Eq.~A15!, and we have
IE

ris

J.

e

02660
t

of

K (
j 51

N21

~Dfd, j~ t,t!!212 (
j 52

N21

(
k51

j 21

Dfd, jDfd,kL
t,l j ,xi

.N
1

2
~2n0k0A!2sin2S 1

2
vat D 2

3
~12g1!. ~A17!

In general, the errors of approximation we made in E
~A12! and~A18! are small when bothkal and the averageN
are large. Conversely, the error can be large: for example
N510, andkal 51, the error is about 50% for isotropic sca
tering.

Finally, the average over all the polar angles of the rig
hand side of Eq.~A1e! is

K 2(
j 51

N

(
k51

N21

Dfn, jDfd,kL
t,l j ,xi

5~12g1!~kal !21i ~N21!@~ Ĵ2!0,02~ Ĵ* 2!0,0#50.

~A18!

The zero is obtained in Eq.~A19! because the elements o
the symmetric matrixĴ are either real or imaginary number

The expression for the functionF(t) @Eq. ~4!# becomes

F~t!.^N 1
4 ~kal !2~4n0k0Ah!2 sin2~ 1

2 vat!

3Re@ Ĵ~ Î 2 Ĵ!21#0,01N 1
2 ~2n0k0A!2

3sin2~ 1
2 vat! 2

3 ~12g1!&N , ~A19!

where the last average is over all realizations of the num
of free pathsN in a photon path of lengths. Since the aver-
age value ofN is s/ l , we have

F~t!.
s

l
~2n0k0A!2 sin2S 1

2
vat D H h2~kal !2

3Re@ Ĵ~ Î 2 Ĵ!21#0,01
1

3
~12g1!J . ~A20!
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