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Priority Report

Effects of Photoacoustic Imaging and Photothermal Ablation
Therapy Mediated by Targeted Hollow Gold Nanospheres in
an Orthotopic Mouse Xenograft Model of Glioma

Wei Lu1, Marites P. Melancon1,2, Chiyi Xiong1, Qian Huang1, Andrew Elliott2, Shaoli Song1, Rui Zhang1,
Leo G. Flores II1, Juri G. Gelovani1, Lihong V. Wang3, Geng Ku1, R. Jason Stafford2, and Chun Li1

Abstract
Advancements in nanotechnology have made it possible to create multifunctional nanostructures that can be

used simultaneously to image and treat cancers. For example, hollow gold nanospheres (HAuNS) have been
shown to generate intense photoacoustic signals and induce efficient photothermal ablation (PTA) therapy. In
this study, we used photoacoustic tomography, a hybrid imaging modality, to assess the intravenous delivery of
HAuNS targeted to integrins that are overexpressed in both glioma and angiogenic blood vessels in a mouse
model of glioma. Mice were then treated with near-infrared laser, which elevated tumor temperature by 20.7�C.
We found that PTA treatment significantly prolonged the survival of tumor-bearing mice. Taken together, these
results show the feasibility of using a single nanostructure for image-guided local tumor PTA therapy with
photoacoustic molecular imaging. Cancer Res; 71(19); 6116–21. �2011 AACR.

Introduction

With nanotechnology, it is possible to createmultifunctional
nanostructures capable ofmediating diagnostic imaging, treat-
ment, and monitoring of therapeutic response. For example,
pegylated gold nanorods were used for both X-ray computed
tomography and photothermal ablation (PTA; ref. 1). This
approach, sometimes referred to as "theranostics," holds great
promise for cancer diagnosis and therapy. Photoacoustic
tomography (PAT) is a hybrid imaging modality that detects
absorbed photons ultrasonically through the photoacoustic
effect (2). PAT is capable of detecting optical contrast agents
with high sensitivity and specificity (3–5). With the metal
nanocomposites, photoacoustic imaging and temperature
measurement for photothermal cancer therapy was investi-
gated in tissue-mimicking phantoms and excised animal
tissues (6).

We hypothesize that PAT is an accurate and sensitive
imaging modality for cancer diagnosis and for assessing
targeted delivery to brain tumors of gold nanostructures used
for PTA therapy. Silica-cored gold nanoshells, which are under
clinical investigation, have been shown to mediate effective
PTA therapy and improve survival in a subcutaneous glioma
model in mice (7). In this work, we showed that intravenous
injection of hollow gold nanospheres (HAuNS) targeted to
integrins that are overexpressed in both glioma and angio-
genic blood vessels (4, 8, 9), permitted PAT of orthotopically
inoculated U87 glioma in nude mice, and mediated selective
antitumor effect whenmice were irradiated with near-infrared
(NIR) laser. Although there have been numerous reports on
theranostic applications of cancer nanotechnology, to the best
of our knowledge, this is the first report to show simultaneous
molecular PAT and PTA therapy for cancer with a single
platform of targeted nanoparticles.

Materials and Methods

Nanoparticle synthesis
HAuNSwere synthesized as previously described (10). Cyclic

RGD peptide c(KRGDf) was synthesized manually by PL-DMA
resin and Na-Fmoc chemistry (11). Cyclic RGD peptides have
been used for imaging and treatment of glioma (4, 8, 9) because
of their high binding affinity to integrin receptors such as avb3
receptors (IC50 ¼ 2–40 nmol/L; refs. 12, 13). The peptide
was conjugated to one terminus of a heterodifunctional poly-
ethylene glycol (PEG) precursor, N-hydroxysuccinimidyl-PEG-
S-acetylthioacetate (NHS-PEG-SATA; molecular weight 5,000),
through its e-amineof lysine residueandactivatedester inNHS-
PEG-SATA. The sulfhydryl group on the other terminus of
c(KRGDf)-PEG-SATA was released by treatment with
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0.5 mol/L hydroxylamine in PBS (Supplementary Fig. S1).
HAuNS (8.5 � 1012 particles/mL) were then added to argon-
purged aqueous solution containing c(KRGDf)-PEG-SH
(50 mg/mL) and PEG-SH (500 mg/mL; Sigma) and the solution
was stirred overnight at room temperature to give c(KRGDf)-
PEG-HAuNS (Fig. 1A). PEG-SH was conjugated to HAuNS
similarly to give PEG-HAuNS (nonspecific control).

Photoacoustic imaging
PAT of mouse brain inoculated with human glioblastoma

stably transfected with luciferase gene (U87-TGL) was carried
out as we previously described (3). A brief description of the
PAT technique is provided in the Supplementary Data. The
cell line provided by Dr. Juri G. Gelovani (University of Texas)
in January 2008 was validated by short tandem repeat (STR)
DNA fingerprinting by the Characterized Cell Line Core
Facility at The University of Texas MD Anderson Cancer
Center on April 12, 2011. The STR profiles were compared
with known ATCC fingerprints, and to the Cell Line
Integrated Molecular Authentication database (CLIMA) ver-
sion 0.1.200808 (http://bioinformatics.istge.it/clima/). The
STR profiles matched known DNA fingerprints of U87-MG.
On day 8 after tumor inoculation, mice were imaged by a

prototype PAT scanner. Mice were then injected i.v. with
c(KRGDf)-PEG-HAuNS or PEG-HAuNS (2.5 � 1011 particles
per mouse). Contrast-enhanced photoacoustic images were
acquired 24 hours after nanoparticle injection. Imaging data
were reconstructed by using modified delay-and-sum back-
projection reconstruction algorithm. After data acquisition,
mice were sacrificed by overexposure to CO2. Open-skull

surgery was conducted to permit photography of the brain
tumors.

Micro–positron emission tomography
To further confirm the accuracy of PAT imaging of U87

tumors, c(KRGDf)-PEG-HAuNS were labeled with the positron
emitter 64Cu (t1/2 ¼ 12.7 hours; ref. 14). Tumor-bearing mice
were injected i.v. with 64Cu-labeled c(KRGDf)-PEG-HAuNS or
64Cu-labeled PEG-HAuNS at a dose of 7.5 mCi/kg
(n ¼ 3 per agent). Twenty-four hours later, mice were anes-
thetized with 2% isoflurane (Baxter). Mice were subjected to a
7-minute micro–computed tomography (mCT) scan followed
by a 20-minute micro–positron emission tomography (mPET)
scan with an Inveon mPET/CT Scanner (Siemens). The mPET/
CT images were generated separately and then fused by
Inveon Research Workplace version 3.0 (Siemens).

Photothermal therapy
Onday 8 after tumor inoculation,micewere injected i.v. with

D-luciferin (4 mg/kg) for bioluminescence imaging. Mice were
randomly allocated into 5 groups of 15 mice each. Groups I
and IV were injected i.v. with c(KRGDf)-PEG-HAuNS, group II
with PEG-HAuNS (both 2.5 � 1011 particles per mouse), and
groups III and V with saline. Groups I to III were also treated
with NIR laser irradiation (16 W/cm2, 3 minutes, 808 nm) 24
hours after nanoparticle injection. In each group, 5 mice were
subjected to luciferase bioluminescence imaging at various
times after nanoparticle injection to measure tumor burden
(response to PTA therapy), and 10 mice were subjected to

Figure 1. A, scheme for c(KRGDf)-
PEG-HAuNS bioconjugation.
B, c(KRGDf)-PEG-HAuNS
characteristics on transmission
electron microscopy (bar, 20 nm)
and UV–visible spectrum
(measured in water). C, PAT
images of U87 human glioma in
mouse brains before (0 hour) and
24 hours after i.v. injection of
nanoparticles
(bar, 5 mm). Photographs of
corresponding mouse brains were
used to confirm tumor location.
Arrows, locations of tumors;
L, left. D, photoacoustic (PA)
signal intensity ratio of tumor-to-
contralateral brain in mice before
(0 hour) and 24 hours after
injection of HAuNS. Data are
presented as mean � SD.
c(KRGDf)-PEG-HAuNS group,
n ¼ 5; PEG-HAuNS group, n ¼ 4.
*, significant difference between
precontrast and 24-hour
postcontrast groups (P < 0.05).
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survival monitoring. Survival data were presented by Kaplan–
Meier plots and analyzed by a log-rank test. P < 0.05 was
considered statistically significant.

Results

PAT permits visualization of U87 gliomas in intact nude
mice

Transmission electron microscopy showed that c(KRGDf)-
PEG-HAuNS were spherical, had hollow interiors, had average
diameter of approximately 40 nm, and had an absorption peak
tuned to approximately 800 nm (Fig. 1B). We previously
showed that the molar extinction coefficient associated with
the optical absorption cross-section of HAuNS [1.4 � 1011

(mol/L)�1�cm�1] is much higher than that of hemoglobin
[�1 � 103 (mol/L)�1�cm�1]. Indeed, PEG-HAuNS at a con-
centration as low as 20 pmol/L displayed the same optical
absorption as hemoglobin at its typical blood concentration of
2.3 mmol/L (3). The strong absorption of PEG-HAuNS in the
NIR region permitted intense contrast in PAT.

Images of mice with U87 glioma before and after i.v.
injection of c(KRGDf)-PEG-HAuNS or PEG-HAuNS are
shown in Fig. 1C. Precontrast PAT only showed the normal
brain vasculature. There was a low signal-to-background
ratio between tumor and normal brain with no significant
difference in photoacoustic signal intensities (Fig. 1D). How-
ever, 24 hours after injection of c(KRGDf)-PEG-HAuNS, PAT
clearly revealed brain tumor, and the tumor location on PAT
correlated with mouse brain anatomy. Quantitative analysis
confirmed that the mean contrast-enhanced photoacoustic
signal ratio of tumor-to-contralateral normal brain 24 hours
after c(KRGDf)-PEG-HAuNS injection was approximately
twice as high as that obtained from precontrast images (P
¼ 0.0375). In contrast, 24 hours after injection of PEG-
HAuNS, there was no change in tumor-to-brain photoacous-
tic ratio compared with that obtained from precontrast PAT
images (P ¼ 0.4677). These data supported that selective

accumulation of c(KRGDf)-PEG-HAuNS enhanced PAT of
U87 glioma.

mPET/CT confirms accuracy of PAT imaging of U87
gliomas with c(KRGDf)-PEG-HAuNS

Twenty-four hours after i.v. injection, 64Cu-labeled
c(KRGDf)-PEG-HAuNS showed 2.9-fold higher uptake than
64Cu-labeled PEG-HAuNS in U87 tumors [1.12 � 0.22
percentage of injected dose per gram of tissue (%ID/g) vs.
0.38 � 0.12%ID/g; Fig. 2; Supplementary Fig. S2], and auto-
radiography showed higher radioactivity in tumor with
c(KRGDf)-PEG-HAuNS than PEG-HAuNS. In addition to
integrin avb3, recent study showed that c(KRGDf) may also
interact with other integrins such as avb5 (15). Here, we used
immunohistochemical staining of integrin avb3 receptors in
tumors to confirm HAuNS localization. The intracranial
distribution of radioactivity matched well with the site of
tumor inoculation as well as the distribution of integrin
avb3. Selective uptake of c(KRGDf)-PEG-HAuNS in U87
tumors was further supported by microscopy, which
revealed greater accumulation of c(KRGDf)-PEG-HAuNS
than PEG-HAuNS in tumors (Fig. 2).

Injection of c(KRGDf)-PEG-HAuNS plus NIR laser
irradiation elevates temperature of U87 gliomas

Representative magnetic resonance temperature imaging
(MRTI) maps of mouse brains at the end of laser irradiation
are shown in Fig. 3A. Dynamic temperature curves based on
MRTI analysis revealed that NIR laser irradiation in mice
injected with c(KRGDf)-PEG-HAuNS reached a maximum
temperature of 57.75 � 0.46�C (Fig. 3B), which is more than
the threshold of temperature of 54�C needed for irreversible
cell damage (16, 17). In contrast, NIR laser irradiation in mice
injected with nontargeted PEG-HAuNS or saline resulted in
maximum temperatures of 48.14� 0.12�C and 41.65� 0.09�C,
respectively, which were insufficient to induce irreversible cell
damage (Fig. 3B).
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Figure 2. Targeted delivery of
64Cu-labeled c(KRGDf)-PEG-
HAuNS to U87 human glioma
in mouse brains. Shown are
mPET/CT images (obtained
24 hours after i.v. injection of
nanoparticles); photographs of
mouse brains stained with
hematoxylin and eosin (H&E)
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of mouse brains; and
immunofluorescence
micrographs of tumor tissue at
high magnification. Red, avb3;
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arrows, tumors; bar, 10 mm.
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PTA therapy with c(KRGDf)-PEG-HAuNS prolongs
survival of mice with orthotopic U87 gliomas
Bioluminescence imaging showed significantly decreased

luminescence intensity in tumors of mice treated with
c(KRGDf)-PEG-HAuNS injection and laser irradiation
(Fig. 4A and B). This tumor-ablation effect was observed
during the first 9 days after laser treatment (days 9–17), when
the luminescence intensity was less than that before laser
treatment (day 8). On day 19 and later, the luminescence
intensity exceeded that before laser treatment, indicating
brain tumor recurrence. In mice treated with PEG-HAuNS
plus laser, luminescence intensity in tumors decreased only on
day 9. In mice treated with laser alone, c(KRGDf)-PEG-HAuNS
alone, or saline, luminescence intensity increased throughout
treatment.
The median survival time of mice treated with c(KRGDf)-

PEG-HAuNS plus laser (28 days) was significantly more than
that of the other groups (P < 0.001): PEG-HAuNS plus laser,
19.5 days; laser alone, 17.5 days; c(KRGDf)-PEG-HAuNS alone,
17.5 days; and saline, 16.5 days (Fig. 4C). Histologic examina-
tion confirmed that c(KRGDf)-PEG-HAuNS plus laser was the
treatment causing the most extensive necrotic response
(Fig. 4D). Extensive pyknosis, cytoplasmic acidophilia (10,
17), and corruption of the extracellular matrix of the tumor
appeared throughout tumors of mice treated with c(KRGDf)-
PEG-HAuNS plus laser. The tumor cells were completely
ablated; there were no discernible residue viable tumor cells
in the tumor periphery (Fig. 4D, arrow). In mice treated with
PEG-HAuNS plus laser or laser alone, approximately 45% and
30% of tumor tissues were necrotized, characterized as pykno-
sis and medium cytoplasmic acidophilia, and there were large
numbers of viable tumor cells in the periphery (Fig. 4D,
asterisks). In tumors of mice treated with c(KRGDf)-PEG-
HAuNS alone or saline alone, most tumor cells were intact.

Discussion

We have shown effective PAT imaging and PTA therapy of
gliomamediated by a single preparation of targeted HAuNS on

the basis of their intrinsically high optical absorption cross-
section. The findings from this study suggest potential appli-
cations of HAuNS as a novel theranostic platform. First,
c(KRGDf)-PEG-HAuNS can serve as efficient optical contrast
agents for photoacoustic imaging, which may provide cancer
diagnosis with high resolution and high sensitivity in addition
to conventional imagingmodalities. PATmay also be useful for
pretreatment diagnosis and real-timemonitoring of treatment,
as well as assessment of treatment outcome. Second, under the
guidance of PAT imaging, accurate and efficient PTA of tumor
cells would be instituted simply by switching the laser power
from diagnostic level (pulsed laser, 50mW/cm2) to therapeutic
level (diode laser, 16 W/cm2) on the basis of the high photo-
thermal coupling efficiency of HAuNS. Third, given that
mPET/CT using 64Cu-labeled c(KRGDf)-PEG-HAuNS con-
firmed selective uptake of the nanoparticles in U87 tumors,
PET/CT with 64Cu-labeled targeted HAuNS should provide an
alternative imagingmethod forHAuNS-mediated PTA therapy.

With these advantages,we envision that for treating an entire
tumor volume, delivery of laser energy to the region of interest
would be achieved in a way similar to that of interstitial high-
dose-rate brachytherapy in that multiple applicators are used
to cover the area of interest (18). For individuals with small
recurrent tumors, who represent a large and important patient
population, this would provide a minimally invasive technique
to both diagnose and target the recurrence, using a single fiber.
Remaining PAT signal from the tumor bed or beyond after
surgery could guide further resection and/or provide opportu-
nity for selective ablation mediated by the targeted HAuNS. If
successfully implemented in the clinical setting, our approach
described here offers an alternative option over current clinical
investigations of glioma theranostics involving CT-guided
thermotherapy with superparamagnetic iron oxide nanoparti-
cles in an alternating magnetic field (19, 20). In this case, the
nanoparticles are administered intratumorally under neurona-
vigational control and pretreatment MRI.

Although no viable tumor cells were found on histologic
evaluation after treatment with c(KRGDf)-PEG-HAuNS plus
NIR irradiation, we observed regrowth of tumor, suggesting

Figure 3. Real-time MRTI of U87
human gliomas in mouse brains
24 hours after injection of HAuNS.
A, overlap of mouse brain
T1-weighted MRI with Magnevist
and MRTI at the end of laser
irradiation. B, tumor temperature
change versus time in the region
of interest (blue rectangles in A).
Laser (16 W/cm2 at 808 nm) was
applied for 3 minutes between
the time points indicated by
the arrows.
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the presence of residual tumor cells after treatment.
Combining PTA therapy and other treatment modalities, such
as photothermal chemotherapy made possible with drug-
loaded HAuNS or photothermal transfection made possible
with HAuNS coated with therapeutic siRNA (14), should lead
to further enhanced therapeutic outcome and even cure.
Studies toward this goal are currently underway.
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Figure 4. PTA of U87 human
gliomas in mouse brains. A,
representative bioluminescence
images of nude mice bearing
U87-TGL tumors with different
treatments (see Materials and
Methods). B, quantitative analysis
of bioluminescence beginning
with treatment administration on
day 8 after tumor inoculation
(n¼ 5 per group). C, Kaplan–Meier
survival curve of tumor-bearing
mice treated as in B (n ¼ 10 per
group). D, histologic evaluation
of tumor necrosis. Left,
representative photographs of
tumor-bearing mouse brains
stained with hematoxylin and
eosin 24 hours after NIR laser
irradiation. Right (3 lanes),
representative microphotographs
at high magnification of the areas
corresponding to the boxed areas
in the left lane. Arrow indicates no
discernible residual viable tumor
cells in the tumor periphery.
*, viable tumor cells inmice treated
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