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A Forward-Adjoint Operator Pair Based on the Elastic Wave Equation
for Use in Transcranial Photoacoustic Computed Tomography∗
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Abstract. Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits op-
tical contrast and ultrasonic detection principles to form images of the photoacoustically induced
initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an
inverse source problem in which the initial pressure distribution is recovered from measurements
of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation
for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo
absorption, scattering, and longitudinal-to-shear wave mode conversion as they propagate through
the skull. To properly account for these effects, a wave-equation-based inversion method should be
employed that can model the heterogeneous elastic properties of the skull. In this work, a forward
model based on a finite-difference time-domain discretization of the three-dimensional elastic wave
equation is established and a procedure for computing the corresponding adjoint of the forward
operator is presented. Massively parallel implementations of these operators employing multiple
graphics processing units are also developed. The developed numerical framework is validated and
investigated in computer-simulation and experimental phantom studies whose designs are motivated
by transcranial PACT applications.
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1. Introduction. Photoacoustic computed tomography (PACT) is a noninvasive imaging
modality that exploits the optical absorption contrast of tissue with the high spatial resolution
of ultrasound imaging techniques [42, 27, 55]. In PACT, the target is illuminated with a short
optical pulse that results in the generation of acoustic pressure signals via the thermoacoustic
effect [53, 40]. The propagated acoustic pressure signals are then detected by use of a collec-
tion of wideband ultrasonic transducers that are located outside the support of the object.
Typically, the measured pressure signals are employed to estimate the induced initial pressure
distribution or, equivalently, if the Grüneisen parameter is known, the absorbed optical energy
distribution.
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Transcranial brain imaging represents an important application that may benefit sig-
nificantly by the development of PACT methods. Existing human brain imaging modali-
ties include X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), and ultrasonography. However, all these modalities suffer from
significant shortcomings. X-ray CT, PET, and MRI are expensive and employ bulky and
generally nonportable imaging equipment. Moreover, X-ray, CT, and PET employ ionizing
radiation and are therefore not suitable for longitudinal studies, and MRI-based methods are
generally slow. Ultrasonography is an established portable pediatric brain imaging modality
that can operate in near real-time, but its image quality degrades severely when employed
after the closure of the fontanels. On the other hand, PACT can be implemented in near
real-time, does not employ ionizing radiation, is much less costly than MRI, PET, or X-ray
CT, and can provide both anatomical and functional information.

In vivo transcranial PACT studies have revealed structure and hemodynamic responses
in small animals [50, 30, 55]. In these small animal studies, PACT was used to visualize
brain structure, brain lesions, and neurofunctional activities such as cerebral hemodynamic
responses to hyperoxia and hypoxia and cerebral cortical responses to various forms of stimu-
lation [50, 30]. In addition to providing functional and structural information about the brain,
transcranial PACT has also been utlized to study the formation of cerebral edema and its ex-
pansion and recovery [55]. Hence, transcranial PACT is a neuroimaging modality that holds
promise for applications in neurophysiology, neuropathology, and neurotherapy. Because the
skulls in these small animal studies were relatively thin (∼ 1 mm), they did not significantly
aberrate the photoacoustic wavefields. As such, conventional backprojection (BP) methods
that ignored the presence of the skull and assumed a homogeneous lossless fluid medium were
employed for image reconstruction with good success. However, photoacoustic signals can be
significantly aberrated by thicker skulls present in adolescent and adult primates. To render
PACT an effective imaging modality for use with transcranial imaging in large primates, it is
necessary to develop image reconstruction methodologies that can accurately compensate for
skull-induced aberrations of the recorded PA signals.

Toward this goal, ex vivo studies involving primate heads have also been conducted [54,
24, 55, 56, 39, 22]. In such applications, the effects of the skull on the recorded photoacoustic
wavefield were no longer negligible. To address this, a subject-specific imaging model that
approximately describes the interaction of the photoacoustic wavefield with the skull was
developed [22]. This imaging model was established by use of adjunct imaging data, such as X-
ray CT, that specified the skull morphology and composition [33, 25, 2]. It was demonstrated
that image reconstruction based on the subject-specific imaging model yielded images that
contained significantly reduced artifact levels compared to those reconstructed by use of a
conventional BP method [22]. However, a limitation of that work was that it assumed a fluid
medium and therefore assumed a simplified wave propagation model in which longitudinal-
to-shear-wave mode conversion within the skull [44, 51, 20], which is an elastic solid, was
neglected. The deleterious effects of making such an approximation in transcranial PACT
have been studied previously [45].

To circumvent limitations of previous approaches, in this work a numerical framework for
image reconstruction in transcranial PACT based on an elastic wave equation that describes
a linear isotropic, lossy, and heterogeneous medium is developed and investigated. Similar to
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the work by Huang et al. [22], estimates of the acoustic parameters of the skull are assumed
to be obtainable from adjunct image data. In transcranial ultrasound therapy applications,
the skull’s acoustic parameters are routinely estimated in this way [33, 25, 2, 34]. However,
unlike previous methods, the skull is treated as an elastic solid and therefore longitudinal-to-
shear-wave mode conversion within the skull is modeled.

The primary contributions of this work are the establishment of a discrete forward operator
(i.e., imaging model) for transcranial PACT that is based on the three-dimensional (3D)
elastic wave equation and a procedure to implement an associated matched adjoint operator.
Specifically, the finite-difference time-domain method (FDTD) is adopted for implementing
the forward operator. Both the forward and adjoint operators are implemented using multiple
graphics processing units (GPUs). In certain cases, the adjoint operator may serve as a useful
image reconstruction operator. More generally, however, the ability to compute the adjoint
operator will permit application of gradient-based iterative reconstruction algorithms that seek
to minimize a specified objective function. The developed numerical framework is validated
and investigated in computer-simulation and experimental phantom studies.

The paper is organized as follows. In section 2, the salient imaging physics and image
reconstruction principles are reviewed briefly. The explicit formulation of the forward oper-
ator is described in section 3, and the implementation of the corresponding discrete adjoint
operator is described in section 4. The forward operator is validated in section 5, in which sim-
ulated and analytically produced measurement data are compared. Finally, the forward and
adjoint operators are applied in image reconstruction studies involving computer-simulated
and experimental data in sections 6 and 7, respectively.

2. Background. The principles of photoacoustic wavefield generation and propagation in
an elastic medium are described below in their continuous and discrete forms. The discrete
description is based on the FDTD method [8, 37, 38, 48]. The FDTD method is described by
use of a matrix notation, which subsequently will facilitate the computation of the matched
adjoint operator.

2.1. Photoacoustic wavefield propagation: Continuous formulation. Let the photoa-
coustically induced stress tensor at location r ∈ R3 and time t ≥ 0 be defined as

σ(r, t) ≡

 σ11(r, t) σ12(r, t) σ13(r, t)
σ21(r, t) σ22(r, t) σ23(r, t)
σ31(r, t) σ32(r, t) σ33(r, t)

 ,(1)

where σij(r, t) represents the stress in the ith direction acting on a plane perpendicular to
the jth direction. Additionally, let p0(r) denote the photoacoustically induced initial pressure
distribution within the object, and let u̇(r, t) ≡ (u̇1(r, t), u̇2(r, t), u̇3(r, t)) represent the vector-
valued acoustic particle velocity. Let ρ(r) denote the medium’s density distribution and λ(r),
µ(r) represent the Lamé parameters that describe the full elastic tensor of the linear isotropic
media. All functions in this work are assumed to be bounded and compactly supported.

The compressional and shear wave propagation speeds are given by

cl(r) =

√
λ(r) + 2µ(r)

ρ(r)
and cs(r) =

√
µ(r)
ρ (r)

,(2)
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respectively. In transcranial PACT imaging applications, the acoustic absorption is not negligi-
ble. Here, acoustic absorption within the skull is described by a diffusive absorption model [41].
The diffusive absorption model ignores the fact that the wavefield absorption is dependent on
temporal frequency. This model, however, is reasonable for cases where the bandwidth of the
photoacoustic signals is limited. Moreover, the model also assumes that the shear absorption
to compressional absorption ratio is given by the compressional velocity to shear velocity ra-
tio. This is approximately true in bone, because the slower shear waves are, in fact, more
attenuated than the faster compressive waves [41].

In a 3D heterogeneous linear isotropic elastic medium with an acoustic absorption coeffi-
cient α(r), the propagation of u̇(r, t) and σ(r, t) can be modeled by the following two coupled
equations [8, 48, 32, 1]:

(3a) ∂tu̇ (r, t) + α (r) u̇ (r, t) =
1

ρ (r)

(
∇ · σ (r, t)

)
and

(3b) ∂tσ (r, t) = λ(r)tr(∇u̇ (r, t))I + µ(r)(∇u̇ (r, t) +∇u̇ (r, t)T ),

subject to the initial conditions

σ0(r) ≡ σ(r, t)|t=0 = −1
3
p0(r)I, u̇ (r, t) |t=0 = 0.(3c)

Here, tr (·) is the operator that calculates the trace of a matrix and I ∈ R3×3 is the identity
matrix. In (3c), it has been assumed that the object function p0(r) is compactly supported in
a fluid medium where the shear modulus µ(r) = 0. In transcranial PACT, this corresponds
to the situation where the initial photoacoustic wavefield is produced within the soft tissue
enclosed by the skull. Note that the initial conditions defined in (3) would have to be modified
if the photoacoustically induced stress is generated within the elastic media.

2.2. Photoacoustic wavefield propagation: Discrete formulation. The FDTD method
is employed to propagate the photoacoustic wavefield forward in space and time by computing
numerical solutions to the coupled equations given in (3) [37]. In the FDTD method, at a
given temporal step, each grid point is updated based on the local information around that
same point. As the FDTD method utilizes local information, it lends itself to distributed
programming across multiple devices. Since the latency in communication between devices
is a limiting factor on computational efficiency, spectral and pseudospectral methods [10, 46,
19, 47] that use global information at each temporal update are not as efficient for distributed
programming. In addition, because of the simplicity of the FDTD method to model elastic
wave propagation, it still remains very widely employed in seismology [37].

The salient features of the FDTD method that will underlie the discrete PACT imaging
model are described below. In the initial applications of the FDTD method to the elastic wave
equation, all functions (e.g., stress tensor and particle velocity) were sampled at the same grid
positions [1, 8]. However, such conventional grid schemes were found to possess limitations.
Problems with grid dispersion and instabilities in media possessing high Poisson’s ratios led
Virieux [48, 49] to introduce the staggered-grid velocity-stress FD schemes for modeling elastic
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Figure 1. A staggered-grid FD cell with positions of the wavefield variables [37].

wave propagation. In our study we will employ the introduced the fourth-order staggered-
grid FD scheme to compute the numerical spatial derivatives. The fourth-order staggered-grid
scheme in three dimensions has been shown to reduce the computer memory requirements by
at least eight times compared to second-order schemes without any loss in accuracy [37].
A staggered-grid FD cell with positions where the particle velocity components, stress-tensor
components, density, and elastic material parameters are sampled is illustrated in Figure 1 [37].

Note that for the FD scheme, the material properties, stress, and particle velocity functions
are sampled at different points of the staggered FD cell depicted in Figure 1. Let the set of
position vectors {ri1, ri2, . . . , riN ∈ R3} specify the locations where ui, for i = 1, 2, 3, is sampled
and {rjk1 , r

jk
2 , . . . , r

jk
N ∈ R3} specify the locations where σjk(for j, k = 1, 2, 3) is sampled. Here,

N = N1N2N3 specifies the number of vertices of a 3D Cartesian grid, where Ni denotes
the number of vertices along the ith direction. Additionally, let m∆t, m ∈ Z∗, ∆t ∈ R+,
denote discretized values of the temporal coordinate t, where Z∗ and R+ denote the sets of
nonnegative integers and positive real numbers, respectively. Lexicographically ordered vector
representations of the components of the sampled particle velocity and stress tensor will be
denoted as

u̇im =
[
u̇i(ri1,m∆t), . . . , u̇i(riN ,m∆t)

]T(4a)
and

σjkm =
[
σjk(rjk1 ,m∆t), . . . , σjk(rjkN ,m∆t)

]T
.(4b)

Let Qi, Ai, Λjk, and Mjk ∈ RN×N be matrices describing the elastic properties of the
medium defined as

Qi ≡ diag
[
ρ(ri1), . . . , ρ(riN )

]
,(5a)

Ai ≡ diag
[
α(ri1), . . . , α(riN )

]
,(5b)

Λjk ≡ diag
[
λ(rjk1 ), . . . , λ(rjkN )

]
,(5c)

and

Mjk ≡ diag
[
µ(rjk1 ), . . . , µ(rjkN )

]
,(5d)
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where diag(a1, . . . , aN ) denotes a diagonal matrix whose diagonal entries starting in the upper
left corner are a1, . . . , aN . Let u̇m− 1

2
∈ R3N×1 and σm ∈ R6N×1 be the concatenation of the

unique components of the particle velocity and stress tensor, defined as

u̇m− 1
2
≡
[
u̇1
m− 1

2
, u̇2

m− 1
2
, u̇3

m− 1
2

]T
(6a)

and

σm ≡
[
σ11
m ,σ

22
m ,σ

33
m ,σ

23
m ,σ

13
m ,σ

12
m

]T
.(6b)

Note that because of the symmetry of the stress tensor (e.g., σij = σji), it is not necessary to
calculate all nine components of the second-order tensor. Here, we have chosen the ordering
of σm to follow Voigt notation [21].

To simplify the subsequent presentation, the following operators are defined:

Jiu̇m− 1
2
≡ (IN×N −∆tAi) u̇i

m− 1
2
,(7a)

Φiσm ≡ ∆tQ−1
i

3∑
j=1

∂jσ
ij
m,(7b)

Ψiju̇m− 1
2
≡ ∆t

[
δijΛij

3∑
k=1

∂ku̇km− 1
2

+ Mij

(
∂iu̇

j

m− 1
2

+ ∂ju̇im− 1
2

)]
,(7c)

where δij is the Kronecker delta, Ji,Ψij ∈ RN×3N , Φi ∈ RN×6N , and ∂i denotes the partial
derivative with respect to the ith spatial coordinate. These operators will allow us to com-
pactly express the discrete form of (3). In addition, the spatial derivatives defined in (7) are
calculated using a fourth-order FD scheme. The fourth-order finite-difference approximation
to the first derivative along any arbitrary direction x in a staggered-grid setup is given by [37]

dφ

dx
(x0) =

1
∆x

[
− 1

24

(
φ

(
x0 +

3
2

∆x
)
− φ

(
x0 −

3
2

∆x
))

(8)

+
9
8

(
φ

(
x0 +

1
2

∆x
)
− φ

(
x0 −

1
2

∆x
))]

,

where φ(x) is an arbitrary field variable (e.g., stress tensor or particle velocity for elastic wave
equation). Additionally, define the operators

J ≡ [J1,J2,J3]T ,(9a)

Φ ≡ [Φ1,Φ2,Φ3]T , and(9b)

Ψ ≡ [Ψ11,Ψ22,Ψ33,Ψ23,Ψ13,Ψ12]T ,(9c)

where J ∈ R3N×3N , and Φ ∈ R3N×6N , Ψ ∈ R6N×3N . In terms of these quantities, the
discretized forms of (3a) and (3b) can be expressed as

u̇m+ 1
2

= Ju̇m− 1
2

+ Φσm,(10a)

σm+1 = σm + Ψu̇m+ 1
2
.(10b)
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2.3. Specification of the image reconstruction problem. The PACT image reconstruc-
tion problem addressed in this work is to obtain an estimate of the photoacoustically induced
initial pressure distribution p0(r) from pressure measurements recorded by a collection of ul-
trasonic transducers surrounding the object. Let p̂m ≡ (p(rd0,m∆t), . . . , p(rdL−1,m∆t))T

denote the measured pressure wavefield at time t = m∆t, for m = 0, . . . ,M − 1, where M
is the total number of time steps, and let rdl ∈ R3, for l = 0, . . . , L − 1, denote the positions
of the L ultrasonic transducers that reside outside the support of the object p0(r). Here, for
simplicity, we neglect the acoustoelectrical impulse response of the ultrasonic transducers and
assume each transducer is point-like. However, we can incorporate the spatial and electrical
impulse responses (EIR) of the transducers in the developed discrete imaging model [23]. In
addition, the acoustic parameters of the medium are assumed to be known.

A general form of the discrete PACT imaging model can be expressed as

p̂ = Hp0,(11)

where the LM × 1 vector

p̂ ≡


p̂0
p̂1
...

p̂M−1

(12)

represents the measured pressure data corresponding to all transducer locations and temporal
samples. Additionally, p0 ∈ RN×1 is the discrete representation of the sought-after initial
pressure distribution within the object that is given by

p0 = −
∑
i

σii0 ,(13)

where σjk0 is the photoacoustically induced initial stress distribution ((4b) with m = 0). The
LM×N matrix H represents the discrete imaging operator (that specifies the forward model),
also referred to as the system matrix. The construction of the system matrix H is based on
the initial value problem defined in (3) and is described in great detail in section 3.

The image reconstruction task in a discrete setting is to determine an estimate of p0
from knowledge of the measured data p̂. Multiple classes of iterative image reconstruction
algorithms require the actions of the operators H and its adjoint H† to be computed repeatedly
[9, 13, 3]. Moreover, in some cases, the adjoint operator may serve as a useful heuristic
reconstruction operator. Methods for implementing these operators are described below.

3. Explicit formulation of discrete imaging model. The FDTD method for numerically
solving the photoacoustic wave equation in elastic linear isotropic media described in sec-
tion 2.2 will be employed to implement the action of the system matrix H. In this section,
we provide an explicit representation of H that will subsequently be employed to determine
H†. Equation (10) can be described by a single matrix equation to determine the updated
wavefield variables after a time step ∆t as

(14) vm+1 = Wvm,
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where

vm =

[
u̇m− 1

2

σm

]
,(15)

and W ∈ R9N×9N is the propagator matrix defined as

W ≡
[

J Φ
ΨJ I6N×6N + ΨΦ

]
.(16)

The wavefield quantities can be propagated forward in time from t = 0 to t = (M − 1)∆t as
v0
v1
...

vM−1

 = TM−1 · · ·T1


v0

09N×1
...

09N×1

 ,(17)

where the 9NM × 9NM matrices Tm(m = 1, . . . ,M − 1) are defined in terms of W as

Tm ≡


I9N×9N · · · 09N×9N

...
. . .

... 0(m+1)·9N×(M−m)·9N
09N×9N · · · I9N×9N
09N×9N · · · W

0(M−m−1)·9N×m·9N 0(M−m−1)·9N×(M−m)·9N

(18)

with W residing between the (9N(m− 1) + 1)th to 9Nmth columns and the (9Nm+ 1)th to
9N(m+ 1)th rows of Tm.

From the initial conditions in (3c), the vector (v0,09N×1, . . . ,09N×1)T can be computed
from the initial pressure distribution p0 as

v0
09N×1

...
09N×1

 = T0p0,(19)

where

T0 ≡
[
τ ,09N×N , . . . ,09N×N

]T ∈ R9NM×N(20)
and

τ ≡
[
03N×N ,−1

3IN×N ,−1
3IN×N ,−1

3IN×N ,03N×N
]T ∈ R9N×N(21)

with p0 being specified by (13).
In general, the transducer locations rdl at which the photoacoustic data p̂ are recorded will

not coincide with the vertices of the 3D Cartesian grid at which the propagated field quantities
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are computed. The measured data p̂ can be related to the computed field quantities via an
interpolation operation defined as

p̂ = M


v0
v1
...

vM−1

 , where M ≡


Θ 0L×9N · · · 0L×9N

0L×9N Θ · · · 0L×9N
...

...
. . .

...
0L×12N 0L×9N · · · Θ

 ∈ RLM×9NM .(22)

Here, Θ ≡
[
s1, . . . , sL

]T ∈ RL×9N , where l = 1, . . . , L and

sl =
[
01×3N ,−Rl,−Rl,−Rl,01×3N

]
(23)

is a 1 × 9N row vector. The elements of the row vector Rl ∈ R1×N are assigned values to
compute the pressure wavefield at the lth transducer using trilinear interpolation.

By use of (17), (19), and (22), the PACT imaging model in (11) can be expressed as

p̂ = MTM−1 · · ·T1T0p0.(24)

and therefore the system matrix is identified as

H = MTM−1 · · ·T1T0.(25)

The explicit form of H† is therefore given by

H† = T†0T
†
1 · · ·T

†
M−1M

†,(26)

where the superscript † denotes the conjugate transpose of a matrix.

4. Implementation of the forward and adjoint operators. Since a typical computational
grid for simulating the stress tensor field that covers an entire human skull can consist of
500 million cells or more, there is a need for computationally efficient implementations of the
forward and adjoint operators. To address this, a massively parallel implementation of the
FDTD method based on NVIDIA’s CUDA framework for general-purpose GPU computation
was implemented [35, 36]. In this way, the action of both the operators H and H† could be
computed by use of multiple GPUs utilizing the message passing interface [36].

To prevent acoustic waves from reflecting off the edge of the simulation grid, an anisotropic
absorbing boundary condition called a perfectly matched layer (PML) was implemented [4,
6, 5, 7]. For solving the photoacoustic wave equation in elastic, linear isotropic media, a
special form of the PML called a convolutional-PML (C-PML) was implemented [26, 43]. To
incorporate the C-PML, auxiliary memory variables need to be introduced [26, 43]. Due to
the incorporation of the auxiliary memory variables, both H and H† need to be modified.
The modified H and H† operators after the incorporation of the C-PML are described in the
appendix.
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The action of the adjoint matrix was implemented according to (26). It can be verified
that padj = H†p̂ can be computed as

vM−1 = ΘT p̂M−1,(27a)

vm−1 = ΘT p̂m−1 + WTvm,

m = M − 1, . . . , 1,(27b)

padj = τTv0.(27c)

Moreover, the recursive temporal backward update step of (27b) can be written in terms of
the update of the field variables similar to (10) as

˜̇um− 1
2

= u̇m+ 1
2

+ ΨTσm+1,(28a)

σm = σm+1 + ΦT ˜̇um− 1
2

+ I2ΘT p̂m+1,(28b)

u̇m− 1
2

= J˜̇um− 1
2
,(28c)

where I2vm ≡ σm.

5. Validation studies. The implementation of the forward operator H, as described by
(25), was validated by comparing the results obtained from the FDTD simulation with a
known analytical solution. As shown in Figure 2(a), the analytic solution was computed
for a lossless semi-infinite medium, with fluid and linear isotropic solid media divided by a
planar boundary. A monopole line source was placed in the fluid medium with the z-axis
chosen normal to the interface between the solid/fluid media. Furthermore, the y-axis was
chosen parallel to the line source located at x = 0, z = hT . The receiving transducer, in this
configuration, was located at x = d, z = hR. In the setup described, the strength of the line
source and the properties of the configuration were both independent of y. The analytical
solution was computed via the Cagniard–De Hoop method [17, 16, 18].

(a) (b)

Figure 2. (a) The setup used to conduct the validation study. (b) A plot comparing the pressure profile
obtained at the receiver location using the analytical solution and the FDTD simulation.
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In the FDTD simulation, a computational volume of 58.2 mm× 346.8 mm× 58.2 mm was
employed. Furthermore, the parameters of the configuration shown in Figure 2(a) were set as
hT = 2.1 mm, hR = 2.1 mm, and d = 2.1 mm, ρs = 1200 kg

m3 , λs = 9.48 GPa, αs = 0.0 1
µs ,

µs = 2.352 GPa, ρf = 1000 kg
m3 , λf = 2.25 GPa, αf = 0.0 1

µs , and µf = 0.0 GPa. A linear
isotropic grid size of ∆x = 0.15 mm was employed. The thickness of the C-PML was 4.5 mm on
all sides of the 3D computational grid. The pressure values obtained at the receiver locations
were sampled with a sampling rate of 40 MHz. The digital representation of the line source
had a Gaussian spread in the x-z-plane with a standard deviation of 1 mm. The results of the
FDTD simulation are superimposed on the analytical solution in Figure 2(b). The pressure
profiles produced by the two methods are found to be nearly overlapping, indicating that the
FDTD method possesses a high degree of accuracy.

In addition to validating the forward operator H, the discrete adjoint operator was vali-
dated by application of the inner product test. The inner product test involves verifying the
identity 〈Hf ,g〉V = 〈f ,H†g〉U, where f ∈ U and g ∈ V. Here, U and V represent the Euclidean
spaces RN×1 and RLM×1, respectively. It was observed that the inner product test agreed to
a six-digit accuracy, thus validating the implementation of the discrete adjoint operator H†.

6. Computer-simulation studies. Computer-simulation studies were conducted in which
the adjoint operator H† was employed as a heuristic reconstruction operator. The performance
of the adjoint operator was compared with a canonical BP reconstruction algorithm [28, 15]
that assumed a homogeneous lossless fluid medium. To further study the impact of modeling
shear wave propagation in 3D transcranial PACT, additional computer-simulation studies
were conducted to assess the performance of the adjoint operator for cases where the shear
modulus of the skull was assumed to be zero.

6.1. Methods.

6.1.1. Imaging geometry and phantom description. A 3D computational volume of
270.0 mm × 270.0 mm × 135.6 mm was employed. The 3D scanning geometry, as shown in
Figure 3(a), consisted of 11 rings of varying radii with 400 transducers evenly distributed in
each ring. The linear isotropic, elastic medium used in the simulation studies was generated
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Figure 3. (a) The 3D scanning geometry used for the computer-simulation studies. (b) A 2D slice of X-ray
CT image of the skull and (c) the corresponding mask generated by the segmentation algorithm.
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(a) (b) (c)

Figure 4. The maximum intensity projection of the initial pressure distribution (a) along the z-axis, (b)
along the y-axis, and (c) along the x-axis.

from 3D X-ray CT images of a human skull. The intact human skull was purchased from
Skull Unlimited International, Inc. (Oklahoma City, OK), and was donated by an 83-year-old
Caucasian male. The CT images were employed to infer the thickness and contour of the skull.

For the simulation studies involving H†, we assumed the skull to be an acoustically homo-
geneous elastic linear isotropic medium. While we consider a relatively simple skull model,
the proposed approach could also be applied for more complex skull models, such as those
that consider the heterogeneity within the skull. In that case, more effort may be required
to accurately estimate the acoustic properties of the skull. In order to extract the contour
and location of the skull from CT images, a segmentation algorithm was employed. The
segmentation algorithm generated a binary mask specifying the location of the skull within
the 3D volume. A 2D slice of the CT image acquired from the human skull and the corre-
sponding mask generated by use of the segmentation algorithm are shown in Figures 3(b) and
3(c), respectively. The medium parameters in the 3D grid were assigned such that the skull
acoustic parameters (ρ = 1850 kg

m3 , cl = 3.0 mm
µs , cs = 1.5 mm

µs , and α = 0.1 1
µs) were set at

all grid positions where the mask was equal to one and the background acoustic parameters
(ρ = 1000 kg

m3 , cl = 1.5 mm
µs , cs = 0.0 mm

µs , and α = 0.0 1
µs) were set at all grid positions where

the mask was equal to zero. At the material interface between the skull and the background
fluid medium, the density and the absorption values were arithmetically averaged to avoid
any instability issues with the FDTD wave equation solver.

The initial pressure distribution assumed in the simulation studies mimicked cortical blood
vessels (CBVs). The phantom, shown in Figure 4, consisted of CBVs positioned approximately
6 mm below the inner surface of the skull. The 2D maximum intensity projection images along
the x-, y-, and z-axes of the initial pressure distribution are shown in Figure 4.

6.1.2. Image reconstruction studies. To demonstrate the use of H† as a reconstruction
operator in 3D transcranial PACT, we conducted noninverse crime computer-simulation stud-
ies [12], where different discretization strategies were employed to generate the measured data
and to compute the action of H†. In these studies, the forward data were generated using the
phantom in Figure 4 with a uniform grid size of ∆x = 0.225 mm and a temporal sampling
rate of 50 MHz. Uncorrelated Gaussian noise was added to the simulated pressure signals.
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The standard deviation of the noise was set at 5% of the maximum signal value recorded.
The action of H† on the generated forward data was computed using a larger grid size of
∆x = 0.3 mm. The simulated pressure data was not temporally downsampled before the
application of the adjoint operator.

Images were also reconstructed from the noisy simulated data by use of the BP recon-
struction algorithm. To find the optimal longitudinal speed of sound (SOS) value for use in
the BP reconstruction algorithm, we tuned the SOS over a range of values and picked the
value that gave us the smallest mean squared error (MSE). The BP images were reconstructed
using a uniform longitudinal SOS set to 1.540 mm

µs , and using a uniform spatial grid of pitch
∆x = 0.3 mm.

Finally, the importance of modeling shear wave propagation in the skull was further as-
sessed by reconstructing images by use of a modified version of H†, denoted as H†µ=0, in which
the shear modulus of the elastic medium was set to zero [22]. This corresponds to the unphys-
ical situation in which the skull does not support shear wave propagation. In this simulation,
a uniform grid size of ∆x = 0.3 mm was used to compute the action of the adjoint operator.
The longitudinal SOS of the skull was tuned over a range of values and the optimal value
was selected based on the MSE. Note that in this case, only the longitudinal SOS of the skull
was tuned and the constant longitudinal SOS of the background fluid medium was fixed at
1.50 mm

µs .

6.2. Computer-simulation: Results. The reconstructed images produced by use of H†
and the BP algorithm are shown in Figures 5(a) to 5(c) and Figures 5(d) to 5(f). In both
cases, the results were displayed as maximum intensity projection images along three mutually
perpendicular directions.

These results demonstrate that H† can more effectively mitigate skull-induced image dis-
tortions than can the BP algorithm. Namely, despite being an approximate reconstruction
operator, the image produced by application of H† accurately displays the blood vessel geom-
etry and possesses a much cleaner background and contains far fewer artifacts than the image
reconstructed using the BP algorithm. It should also be noted that in cases for which H†
does not produce images of adequate quality, a more principled iterative approach to image
reconstruction can be implemented by use of the operators H and H†.

The image reconstructed by use of H†µ=0 is shown in Figures 5(g) to 5(i). This image
contains dramatically elevated artifact levels as compared to the one reconstructed by use of
H†, shown in Figures 5(a) to 5(c). This demonstrates the importance of compensating for
both the acoustic and the elastic properties of the skull in the reconstruction algorithm.

7. Experimental studies. Studies that utilized experimental PACT data produced by a
physical phantom were also conducted.

7.1. Methods.

7.1.1. Imaging geometry and phantom description. A single element transducer was
scanned over 4400 locations (11 rings with 400 evenly distributed positions per ring) in the
configuration shown in Figure 3(a) to acquire the experimental data. A short 10 ns laser pulse
(Nd-YAG Quantel Brilliant B laser with second harmonic generator) with a repetition rate of
10 Hz at a wavelength of 532 nm was used to irradiate a sample located in the center of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. The maximum intensity projection of the reconstructed initial pressure distribution using H†
along (a) the z-axis, (b) the y-axis, and (c) the x-axis. The maximum intensity projection of the reconstructed
initial pressure distribution using the BP algorithm along (d) the z-axis, (e) the y-axis, and (f) the x-axis. The
maximum intensity projection of the reconstructed initial pressure distribution using H†µ=0 along (g) the z-axis,
(h) the y-axis, and (i) the x-axis.

measurement system as shown in Figure 6(a). The subsequently generated acoustic signals
were detected by unfocused transducers, with a center frequency of 1 MHz and a bandwidth of
80%. The electrical signals recorded by the transducers were sampled at a temporal sampling
rate of 20 MHz.
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(a) (b) (c)

Figure 6. (a) The schematic of the system. (b) The position of the acrylic globe relative to the measurement
system. (c) The vessels drawn on the inner surface of the acrylic globe.

The system described above was employed to image a physical phantom whose design
was motivated by transcranial PACT. The phantom comprised a spherical acrylic globe of
thickness of 2.5 mm and an inner radius of 76.2 mm, placed within a 3D volume filled with
water. The acrylic globe is an elastic solid that possesses SOS values that are representative
of a human skull. The location of acrylic globe relative to the transducer array is shown in
Figure 6(b). Optically absorbing vessel-like structures were painted with latex paint on the
inner surface of the acrylic globe, as shown in Figure 6(c). These vessels were intended to
mimic cortical vessels that reside near the top surface of a brain.

In order to construct H†, the acoustic parameters of the phantom need to be specified on
a 3D Cartesian grid. The uniformly thick spherical acrylic shell (inner radius = 76.2 mm and
thickness = 2.5 mm) was placed within the 3D volume such that the z-offset between the center
of the shell and the first ring of transducer measurements was 30.2 mm. Thus, when computing
H†, only a spherical dome of the acrylic shell was included in the 3D simulation volume as
shown by Figure 6(b). The acoustic parameters of the globe were set to be ρ = 1200 kg

m3 , cl =
2.8 m m

µs , cs = 1.4 mm
µs , and α = 0.1 1

µs . In addition, the acoustic parameters of the homogeneous

background (water bath) were specified as ρ = 1000 kg
m3 , cl = 1.5 mm

µs , cs = 0.0 mm
µs , and

α = 0.0 1
µs . Similar to the computer-simulation study, at the material interface between

the globe and the background fluid medium, the density and the absorption values were
arithmetically averaged to avoid any instability issues with the FDTD wave equation solver.

7.1.2. Data preprocessing. Prior to image reconstruction, the measured data were pre-
processed. The preprocessing involved deconvolving the acquired data with the EIR of the
transducer. The measured EIR of the transducer is shown in Figure 7. The Wiener de-
convolution method was employed to extract the deconvolved photoacoustic signals from the
raw electrical transducer measurements. After deconvolution, the data were filtered with a
Hann-window low-pass filter with a cutoff frequency of 2 MHz. The filtered data were also
upsampled by a factor of 2.5, with the goal of circumventing numerical stability issues with
the wave equation solver.
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(a) (b)

Figure 7. (a) The temporal profile of the measured EIR of the transducer. (b) The magnitude of the
frequency response of the EIR of the transducer.

7.1.3. Image reconstruction studies. A 3D computational volume of 270 mm× 270 mm
×135.6 mm was employed in the experimental studies. The action of H† on the preprocessed
data was computed with an uniform grid size of ∆x = 0.3 mm. The BP reconstruction
algorithm was also applied to the preprocessed experimental data. The optimal longitudinal
SOS value for the BP reconstruction algorithm was chosen by considering a range of values
and selecting the value that gave us the best reconstructed image quality, as subjectively
judged via visual inspection. For this study, the optimal longitudinal SOS of the acrylic globe
was set to 1.650 mm

µs . An uniform spatial grid size of ∆x = 0.3 mm was used to compute the
image reconstructed using the BP algorithm.

As in the computer-simulation studies, images were also reconstructed by use of the oper-
ator H†µ=0. In this simulation, a uniform grid size of ∆x = 0.3 mm was employed. Moreover,
the longitudinal SOS of the acrylic globe was tuned over a range of values. Similar to the
BP algorithm, the optimal longitudinal SOS of the acrylic globe was selected based on the
reconstructed image quality.

7.2. Experimental studies: Results. The images reconstructed from the experimental
data are shown in Figure 8. Figures 8(a) to 8(c) display the image reconstructed by application
of H†, while the image reconstructed by use of the BP algorithm is shown in Figures 8(d)
to 8(f). In the BP reconstruction algorithm, the longitudinal SOS of the background fluid
media was set to be 1.507 mm

µs . These results demonstrate that the H† can more effectively
mitigate image distortions due to acrylic globe (i.e., simulated skull structure) than can the
BP algorithm. Additionally, some of the smaller vessel structures are not identifiable in the
BP image but are present in the image reconstructed by use of H†.

The image reconstructed by use of H†µ=0 is shown in Figures 8(g) to 8(i). This image
contains dramatically elevated artifact levels as compared to the one reconstructed by use
of H†, shown in Figures 8(a) to 8(c). This again demonstrates that neglecting to model the
elastic properties of the medium can lead to significant deterioration in image quality.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. The reconstructed initial pressure distribution using H† along three different views are shown
in (a)–(c). The reconstructed initial pressure distribution using the BP algorithm along three different views
is shown in (d)–(f). The reconstructed initial pressure distribution using H†µ=0 along three different views is
shown in (g)–(i).

8. Conclusion. In this work, a forward and adjoint operator pair was introduced for use
in transcranial PACT. To account for longitudinal-to-shear-wave conversions within the skull,
these operators were based on a 3D elastic wave equation. Massively parallel implementations
of these operators employing multiple GPUs were also developed. The developed numerical
framework was validated and investigated in computer-simulation and experimental phantom
studies whose designs were motivated by transcranial PACT applications.
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The numerical studies presented employed the adjoint operator H† and a canonical BP
reconstruction operator for image reconstruction. The two reconstruction approaches differ in
that the operator H† is based on the elastic wave equation for a specified heterogeneous elastic
medium, while the canonical BP method assumes a homogeneous fluid medium. Our results
demonstrated that neglecting to model the heterogeneous elastic properties of the medium
can lead to significant deterioration in image quality. Although not presented, use of a filtered
BP algorithm that was formed by discretizing an exact inversion formula [15, 52] did not alter
the presented findings. In addition, the numerical and experimental results also demonstrated
that the failure to model the shear wave propagation in elastic isotropic media can lead to
significant deterioration in image quality.

There remain several important topics for further investigation. The proposed attenuation
model is a diffusive model, where the attenuation coefficient is independent of the frequency.
However, attenuation of elastic waves propagating in the skull is frequency-dependent. There-
fore, the accuracy of the proposed matched operator pair can be improved by incorporating a
frequency-dependent attenuation model. Furthermore, in both the computer-simulation and
the experimental studies, to perform accurate reconstruction we require prior knowledge of the
spatial distribution of the elastic parameters of the medium. Estimating the elastic parame-
ters in a human skull is a challenging task, as the human skull is an acoustically heterogeneous
medium. The skull is a three-layer structure with a porous zone, called the diploe, stacked
between two dense layers, the outer and inner tables [2]. Recently, the possibility to deduce
acoustic properties of the skull from adjunct CT data has gained some traction [33, 25, 2, 14].
As CT images provide information about the internal structure of the skull, it has been used
to estimate the internal heterogeneities in density, speed, and absorption. Hence, a study
investigating the impact of errors in estimating acoustic parameters using adjunct CT data
on the accuracy of the reconstructed image can be a subject of further study.

In addition, the use of H and H† in studies of iterative image reconstruction is a natural
topic for investigation. The developed massively parallel implementations of H and H† using
multiple GPUs will facilitate these studies. For example, the matched operator pair can be
employed in an iterative image reconstruction method that seeks to minimize a penalized least
square functional. Image reconstruction approaches such as this will be necessary when H†
does not produce useful images.

Appendix A. C-PML.

A.1. Introduction to C-PML. One of the most popular methods of implementing ab-
sorbing boundary conditions is the PML. It was originally developed by Berenger for use with
Maxwell’s equations using a split-field formulation [4, 6]. One of the drawbacks to the split-
field formulation of the classical PML is that it increases the number of field variables that
need to be stored and the number of differential equations that need to be solved over the
whole domain.

Later, a complex coordinate stretching technique was developed [43, 11], which is equiva-
lent to Berenger’s formulation in the frequency domain but which has a much more efficient
implementation in the time domain. In this approach, the spatial derivatives along each di-
rection are replaced with a scaled version. For example, in the x-direction, the scaled spatial
derivative is given by
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∂x̃ =
1

Sx (x, ω)
∂x,(29)

where Sx(x, ω) is a spatially dependent, complex scaling factor given in the temporal frequency
domain by

Sx (x, ω) = 1 +
dx (x)
jω

.(30)

Here, dx(x) is the profile for the absorption of the absorbing boundary layer, which is equal
to zero outside of the layer. In the time domain, (29) is given by

∂x̃ = sx (x, t) ∗t ∂x,(31)

which is why this method is also sometimes called a convolutional PML (C-PML).
While Berenger’s formulation of the PML gives rise to an absorbing boundary layer with

a reflection coefficient of zero for all angles of incidence, this property holds only in the
continuous case. Upon discretization, for waves arriving at grazing incidence, a large amount
of energy is sent back into the main domain in the form of spurious reflected waves. This
makes the discrete classical PML less efficient for cases where the sources are located close
to the edge of the grid, which is commonly encountered in elastic wave modeling [26]. To
circumvent this problem, a more general form for the scaling factor was developed [29, 43],
given by

Sx (x, ω) = κx (x) +
dx (x)

βx (x) + jω
.(32)

Given (29), (31), and (32), one can write

sx (x, t) =
1

κx (x)
δ (t) + ζx (x, t) ,(33)

where

ζx (x, t) ≡ dx (x)
κx (x)2

exp (− [dx (x) /κx (x) + βx (x)] t)U(t),(34)

and U(t) denotes the Heaviside step function. Thus, our modified spatial derivative operator
is given by

∂x̃ =
1

κx (x)
∂x + ζx (t) ∗t ∂x.(35)

From a numerical point of view, the calculation of the convolution is costly because it requires
at each time step to sum over all previous time steps. However, given the particular form of
ζi, it is possible to compute the convolution using a recursive technique by use of a memory
variable [31]. Given a memory variable φx, the derivative of a field variable along the xth
direction can be written as
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∂x̃ =
1
κx
∂x + φx,(36)

where this memory variable is updated recursively in time according to

φnx = bxφ
n−1
x + ax (∂x)n−

1
2 ,(37)

where the spatial derivative acts on the specific field variable associated with the memory
variable φx(x). In addition, the PML decay constants ax(x) and bx(x) in (37) are given by

bx (x) = exp (− (dx (x) /κx (x) + βx (x)) ∆t) ,(38a)

ax (x) =
dx

κx (dx + κxβx (x))
(bx (x)− 1) .(38b)

A.2. Application of C-PML to elastic wave equation. In order to apply the C-PML-
based absorbing boundary conditions to the elastic wave equation in (3), one can replace the
spatial derivative operations defined in (3), with the modified spatial derivative operations
defined in (36). For simplicity, we consider κ = 1. The parameter κ was introduced to
attenuate evanescent waves when modeling Maxwell’s equations and may be less critical to
elastic wave simulations [26]. Thus, given the modified spatial derivative operators in (36),
the collection of differential equations defined in (3) can be written as

∂tu̇
1 + αu̇1 =

1
ρ

3∑
i=1

(
∂iσ

1i + ζi ∗ ∂iσ1i) ,(39a)

∂tu̇
2 + αu̇2 =

1
ρ

3∑
i=1

(
∂iσ

2i + ζi ∗ ∂iσ2i) ,(39b)

∂tu̇
3 + αu̇3 =

1
ρ

3∑
i=1

(
∂iσ

3i + ζi ∗ ∂iσ3i) ,(39c)

∂tσ
11 = λ

3∑
i=1

(
∂iu

i + ζi ∗ ∂iui
)

+ 2µ
(
∂1u̇

1 + ζ1 ∗ ∂1u̇
1) ,(39d)

∂tσ
22 = λ

3∑
i=1

(
∂iu

i + ζi ∗ ∂iui
)

+ 2µ
(
∂2u̇

2 + ζ2 ∗ ∂2u̇
2) ,(39e)

∂tσ
33 = λ

3∑
i=1

(
∂iu

i + ζi ∗ ∂iui
)

+ 2µ
(
∂3u̇

3 + ζ3 ∗ ∂3u̇
3) ,(39f)

∂tσ
23 = µ

(
∂2u̇

3 + ∂3u̇
2 + ζ2 ∗ ∂2u̇

3 + ζ3 ∗ ∂3u̇
2) ,(39g)

∂tσ
13 = µ

(
∂1u̇

3 + ∂3u̇
1 + ζ1 ∗ ∂1u̇

3 + ζ3 ∗ ∂3u̇
1) , and(39h)

∂tσ
12 = µ

(
∂1u̇

2 + ∂2u̇
1 + ζ1 ∗ ∂1u̇

2 + ζ2 ∗ ∂2u̇
1) .(39i)

Note that because the elastic media is linear isotropic (σij = σji), it is not necessary to
compute all nine components of the stress tensor. Let the memory variables be defined as
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φij ← ζj ∗ ∂jσij ,(40a)

ψij ← ζj ∗ ∂jui,(40b)

where the memory variables are updated according to

φij
m+ 1

2
= bj

(
rij
)
φij
m− 1

2
+ aj

(
rij
)
∂jσ

ij
m,(41a)

ψijm = bj
(
ri
)
ψijm−1 + aj

(
ri
)
∂ju

i
m− 1

2
.(41b)

Substituting the memory variables defined in (40) into (39) we have

∂tu̇
1 + αu̇1 =

1
ρ

3∑
i=1

(
∂iσ

1i + φ1i) ,(42a)

∂tu̇
2 + αu̇2 =

1
ρ

3∑
i=1

(
∂iσ

2i + φ2i) ,(42b)

∂tu̇
3 + αu̇3 =

1
ρ

3∑
i=1

(
∂iσ

3i + φ3i) ,(42c)

∂tσ
11 = λ

3∑
i=1

(
∂iu

i + ψii
)

+ 2µ
(
∂1u̇

1 + ψ11) ,(42d)

∂tσ
22 = λ

3∑
i=1

(
∂iu

i + ψii
)

+ 2µ
(
∂2u̇

2 + ψ22) ,(42e)

∂tσ
33 = λ

3∑
i=1

(
∂iu

i + ψii
)

+ 2µ
(
∂3u̇

3 + ψ33) ,(42f)

∂tσ
23 = µ

(
∂2u̇

3 + ∂3u̇
2 + ψ23 + ψ32) ,(42g)

∂tσ
13 = µ

(
∂1u̇

3 + ∂3u̇
1 + ψ13 + ψ31) , and(42h)

∂tσ
12 = µ

(
∂1u̇

2 + ∂2u̇
1 + ψ12 + ψ21) .(42i)

A.3. Discrete formulation. In order to explicitly write the forward and the adjoint op-
erator for the FDTD elastic wave equation solver with the C-PML, we need to define the
following matrices:

Aij ≡ diag
(
ai

(
rj1
)
, . . . , ai

(
rjN
))

,(43a)

Ãij ≡ diag
(
ai

(
rij1
)
, . . . , ai

(
rijN
))

,(43b)

Bij ≡ diag
(
bi

(
rj1
)
, . . . , bi

(
rjN
))

,(43c)

B̃ij ≡ diag
(
bi

(
rij1
)
, . . . , bi

(
rijN
))

,(43d)

X ij ≡ diag
(
χi
(
rj1
)
, . . . , χi

(
rjN
))

,(43e)

X̃ ij ≡ diag
(
χi
(
rij1
)
, . . . , χi

(
rijN
))

,(43f)
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where ai(r), bi(r) are PML decay constants in the ith direction and χi(r) represents the PML
indicator function which is one if the component of r along the ith direction is in the PML.
Let the PML memory variable for the spatial derivative of σij along the jth direction be
denoted as φij , and let the PML memory variable for the spatial derivative of u̇i along the
jth direction be denoted as ψij . It should be noted that φij is sampled at rj and ψij at rij .
Let us define

φm ≡
[
φ11
m ,φ

12
m ,φ

13
m ,φ

21
m ,φ

22
m ,φ

23
m ,φ

31
m ,φ

32
m ,φ

33
m

]T
,(44a)

ψm ≡
[
ψ11
m ,ψ

12
m ,ψ

13
m ,ψ

21
m ,ψ

22
m ,ψ

23
m ,ψ

31
m ,ψ

32
m ,ψ

33
m

]T
,(44b)

where φm ∈ R9N×1 and ψm ∈ R9N×1.
Further, let us define the operators

Bijφm ≡ Bijφ
ij
m,(45a)

B̃ijψm ≡ B̃ijψ
ij
m,(45b)

Eijσm ≡ Aij∂jσ
ij
m,(45c)

Ẽiju̇m ≡ Ãij∂ju̇im,(45d)

Γiφm ≡ ∆tQ−1
i

3∑
j=1

X ijφ
ij
m, and(45e)

∆ijψm ≡ ∆t

[
δijΛij

3∑
k=1

ψkkm + Mij

(
X̃ ijψ

ij
m + X̃ jiψ

ji
m

)]
,(45f)

where Bij , B̃ij ,Γi,∆ij ∈ RN×9N , Eij ∈ RN×6N , and Ẽij ∈ RN×3N . Given the definitions in
(43)–(45), we can write the discretized form of (42) as

φij
m+ 1

2
= Bijφm− 1

2
+ Eijσm,(46a)

u̇i
m+ 1

2
= Jiu̇m− 1

2
+ Φiσm + Γiφm+ 1

2
,(46b)

ψijm+1 = B̃ijψm + Ẽiju̇m+ 1
2
,(46c)

σijm+1 = σijm + Ψiju̇m+ 1
2

+ ∆ijψm+1.(46d)

Further, let us also define

B ≡ [B11,B12,B13,B21,B22,B23,B31,B32,B33]T ,(47a)

B̃ ≡
[
B̃11, B̃12, B̃13, B̃21, B̃22, B̃23, B̃31, B̃32, B̃33

]T
,(47b)

E ≡ [E11,E12,E13,E21,E22,E23,E31,E32,E33]T ,(47c)

Ẽ ≡
[
Ẽ11, Ẽ12, Ẽ13, Ẽ21, Ẽ22, Ẽ23, Ẽ31, Ẽ32, Ẽ33

]T
,(47d)

Γ ≡ [Γ1,Γ2,Γ3]T ,(47e)

∆ ≡ [∆11,∆22,∆33,∆23,∆13,∆12]T ,(47f)
F ≡ Φ + ΓE, and(47g)

G ≡ Ψ + ∆Ẽ,(47h)
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where B, B̃ ∈ R9N×9N , E ∈ R9N×6N , Ẽ ∈ R9N×3N , Γ ∈ R3N×9N , F ∈ R3N×6N , G ∈ R6N×3N ,
and ∆ ∈ R6N×9N . In the presence of the C-PML, the single matrix equation to determine
the updated wavefield variables after time ∆t is given by

(48) v′m+1 = W′v′m,

where

v′m =


φm− 1

2

u̇m− 1
2

ψm
σm

 ,
and the propagator matrix W′ ∈ R27N×27N is given by

W′ =


B 09N×3N 09N×9N E

ΓB J 03N×9N F
ẼΓB ẼJ B̃ ẼF
GΓB GJ ∆B̃ I6N×6N + GF

 .(49)

Hence, the wavefield quantities can be propagated forward in time from t = 0 to t =
(M − 1)∆t as 

v′0
v′1
...

v′M−1

 = T′M−1 · · ·T′1


v′0

027N×1
...

027N×1

 ,(50)

where the 27NM × 27NM matrices T′m(m = 1, . . . ,M − 1) are defined in terms of W′ as

T′m ≡


I27N×27N · · · 027N×27N

...
. . .

... 0(m+1)·27N×(M−m)·27N
027N×27N · · · I27N×27N
027N×27N · · · W′

0(M−m−1)·27N×m·27N 0(M−m−1)·27N×(M−m)·27N

(51)

with W′ residing between the (27N(m − 1) + 1)th and 27Nmth columns and the (27Nm +
1)th 27N(m + 1)th rows of T′m. From the equation of state in (3a), (3b) and the initial
conditions in (3c), the vector (v′0,027N×1, . . . ,027N×1)T can be computed from the initial
pressure distribution p0 as 

v′0
027N×1

...
027N×1

 = T′0p0,(52)
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where

T′0 ≡
[
τ ′,027N×N . . . ,027N×N

]T ∈ R27NM×N and(53)

τ ′ ≡
[
021N×N ,−IN×N ,−IN×N ,−IN×N ,03N×N

]T ∈ R27N×N(54)

and p0 is defined by (13). Note that the memory variable associated with the spatial derivative
of the stress tensor is set to zero initially. This implies that the support of the initial pressure
distribution should be at least two grid positions away from the PML in all three directions.

In general, the transducer locations rdl at which the data p̂ are recorded will not coincide
with the vertices of the Cartesian grid at which the propagated field quantities are computed.
The measured data p̂ can be related to the computed field quantities via an interpolation
operation defined as

p̂ = M′


v′0
v′1
...

v′M−1

 , where M′ ≡


Θ′ 0L×27N · · · 0L×27N

0L×27N Θ′ · · · 0L×27N
...

...
. . .

...
0L×27N 0L×27N · · · Θ′

 ∈ RLM×27N .(55)

Here, Θ′ ≡
[
s′1, . . . , s

′
L

]T ∈ RL×27N , where l = 1, . . . , L and

s′l =
[
01×21N ,−Rl,−Rl,−Rl,01×3N

]
(56)

is a 1×27N row vector. The elements of row vector Rl ∈ R1×N are assigned values to compute
the pressure at the lth transducer using trilinear interpolation. Thus, from (50), (52), (55),
the explicit form of the system matrix that solves the initial value problem of (3) in a discrete
setting with a C-PML is given by

p̂ = M′T′M−1 · · ·T′1T′0p0.(57)

Comparing (57) with (11) the explicit form of the system matrix is given by

H = M′T′M−1 · · ·T′1T′0.(58)

Hence, the explicit form of H† is given by

H† = T′†0T
′†
1 · · ·T′

†
M−1M

′†.(59)

The action of the adjoint matrix on the measured pressure data p̂ was implemented according
to (59). The state equations for computing padj = H†p̂ with the incorporation of the C-PML
can be written as

v′M−1 = Θ′T p̂M−1,(60a)

v′m = Θ′T p̂m−1 + W′Tv′m,

m = M − 1, . . . , 1,(60b)

padj = τ ′Tv′0.(60c)
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Similar to (28), the recursive temporal backward update step of (60b) can be written as

ψ̃m−1 = ψm+1 + ∆†σm+1,(61a)
˜̇um− 1

2
= u̇m+ 1

2
+ Ẽ†Ψm+1 + G†σm+1,(61b)

φ̃m− 1
2

= φm+ 1
2

+ Γ† ˜̇um− 1
2
,(61c)

σm = σm+1 + E†φm+ 1
2

+ F† ˜̇um− 1
2

+ I ′4Θ′T p̂m+1,(61d)

u̇m− 1
2

= J˜̇um− 1
2
,(61e)

ψm−1 = B̃ψ̃m−1,(61f)

φm− 1
2

= Bφ̃m− 1
2
,(61g)

where I ′4v′m ≡ σm.
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