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In this Letter, we show that photonic dimers, the quantum
mechanical bound states of two photons, enable efficient
nonlinear two-photon excitation, primarily due to the
Lorentzian energy anti-correlation and to the temporal
proximity between the constituent photons. We analytically
and numerically demonstrate the order-of-magnitude im-
provement of the excitation efficiency per photon by the
photonic dimers over the ultrashort pulses from a laser.
We further show that, owing to the high excitation effi-
ciency, the two-photon transition rate by photonic dimers
deviates from the well-known linear intensity dependence
at low intensities. Possible approaches for generating the
photonic dimers in semiconductor platforms are also
investigated. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.000475

Two-photon excitation (TPE) is a nonlinear process in which a
fluorophore is excited by nearly simultaneous absorption of two
lower-energy photons (typically in the infrared spectral range,
in contrast to the UV energy photon in single-photon
transition) via short-lived intermediate states. In two-photon
fluorescence light microscopy [1], the use of a longer excitation
wavelength leads to increased penetration because both the ab-
sorption and the reduced scattering coefficients are decreased,
which makes three-dimensional in vivo imaging of thick cells
and tissues at millimeter scales possible [2]. Nonetheless,
because two-photon absorption has an exceedingly small
two-photon cross section on the order of 1 GM (1 GM �
10−50 cm4 s∕photon) [3], ultrashort pulsed laser excitation is
needed to deliver high-photon flux to the sample to generate
efficient absorption. Even so, the excitation efficiency remains
exceptionally low: for example, for a pulse containing 2.4 × 109
photons, merely 5.3 × 10−3 photons are absorbed per fluoro-
phore under typical TPE conditions [4]. The finite quantum
yield of the fluorophore (5% to 90%) further decreases the ef-
ficiency. To increase the TPE efficiency, it is required that the
energies of the two incoming photons match the transition en-
ergy in the frequency domain and that the two photons arrive
nearly simultaneously on the scale of the virtual state lifetime
in the time domain. These two conditions obviously are

incompatible for uncorrelated photons in an ultrashort pulse.
TPE processes by entangled photon pairs have been investi-
gated using the density matrix approach and second-order
time-dependent perturbation [5–7]. However, the density ma-
trix approach neglects the interferences between the atomic
excitation amplitudes by different frequencies of the optical
excitation field and, as shown below, the second-order pertur-
bation is found to be too crude to be quantitatively correct.
Moreover, in the seminal work of Ref. [5], a nearly resonant
intermediate state is assumed, which in general is not valid
in fluorophores used in the TPE microscopy. Here, we inves-
tigate the TPE processes by photonic bound states by explicitly
including the interferences between the atomic excitations by
all photonic frequencies. Our approach is applicable to a wide
range of the intermediate state frequency detunings, including
the far-off-resonance scenario that is directly relevant for TPE
microscopy [1,2]. We show that the photonic bound states en-
able efficient nonlinear TPE per photon over the ultrashort
pulses from a laser, primarily due to the Lorentzian energy
anti-correlation and to the temporal proximity between the
constituent photons. We further show that, owing to the high
excitation efficiency, the two-photon transition rate by pho-
tonic bound states could deviate from the TPE linear intensity
dependence [3,5].

The simplest realization of the photonic bound states is a
photonic dimer consisting of two entangled photons [8–11].
The dimer is characterized by two time scales: the coherence
time T (the temporal duration of each photon) and the corre-
lation time τ (the temporal width of the relative wavefunction
of the entangled photons). We now consider the TPE process
by different optical excitation schemes. A fluorescence molecule
in a single-mode optical waveguide [Fig. 1(a)] is excited by
three different excitation optical fields incident from the left:
a long 1 ns [Fig. 1(b)] and a short 200 fs [Fig. 1(c)] two-photon
Gaussian pulse from a conventional laser, and a photonic dimer
with a correlation time τ � 50 ps and a coherence time T �
1 ns [Fig. 1(d)]. The fluorophore is located at x � 0 and is
modeled as a three-level system, where the ground state jgi (en-
ergy ℏΩg ) and the excited state jei (energy ℏΩe) have the same
parity, so that single-photon transitions from jgi to jei are
parity forbidden, and only a two-photon excitation via an
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intermediate state jii (energy ℏΩi) is allowed. The intermediate
state may represent one of complete sets of eigenstates, which
have non-vanishing dipole matrix elements with jgi and jei.
Ωe − Ωg ≡ 2Ω is the transition frequency. The frequency de-
tuning of the intermediate state jii is δ ≡ Ωi −Ωg − Ω.

The pulse consists of two identically overlapping Gaussian
wavepackets with spatial width σ and central frequency Ω, and
it is described by ϕin�x1, x2� � 1∕� ffiffiffiffiffi

2π
p

σ� exp�iΩ�x1 � x2�∕
vg − �x1 − x0�2∕4σ2 − �x2 − x0�2∕4σ2�, where x1 and x2 corre-
spond to the location of each photon in the input port of
the waveguide, and x0 is the center position of the input pulse
(the results will not depend on the choice of x0 as long as the
initial pulse does not overlap with the molecule). Such an input
is a product state, so the two photons are uncorrelated. The
coherence time is the full width at half-maximum of the pulse
T ≡ 2σ∕vg . The Gaussian modulated dimer is described by
ϕin�x1,x2��N exp�−γjx1−x2j∕vg�iΩ�x1�x2�∕vg −�x1−x0�2∕
4σ2−�x2−x0�2∕4σ2�, where N is the normalization factor. The
center frequency of each photon is Ω. The coherence time is
T � 2σ∕vg � 1 ns, and the correlation time for the probabil-
ity density is defined by τ ≡ 1∕�2γ� � 50 ps. For each case, the
probability density jϕinj2 is plotted [12]. Figure 1(e) plots the
joint frequency spectrum of the dimer described in Fig. 1(d),
exhibiting frequency anti-correlation along the ω1 � ω2 � 2Ω
axis: when one photon has a frequency ω1, the frequency of the
other photon ω2 is constrained to the value 2Ω − ω1, within
the order of 1∕T . The anti-correlation takes place within the
temporal window T . The Hamiltonian of the system is [13]

H
ℏ

�
Z

dx
�
−ivg c

†
R�x�

∂
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�Ωg a†g ag �Ωia
†
i ai � �Ωe � Δa − iγa�a†e ae , (1)

where the first two terms describe the waveguided photons
propagating in the right and left directions, respectively, with
a group velocity vg. c

†
R�x��cR�x�� is the creation (annihilation)

operator for the right-moving photon, and c†L�x��cL�x�� is
similarly defined for the left-moving photon. The next term

describes the absorption of a photon and the excitation of
the molecule from jgi to jii with a coupling strength V 1,
or from jii to jei with V 2. a

†
g ,i,e�ag ,i,e� is the creation (annihi-

lation) operator of the corresponding state. The h.c. term refers
to the Hermitian conjugate. The last three terms describe the
energy of molecular states. The molecular energy renormaliza-
tion Δa − iγa results from coupling with the ambient environ-
ment [13,14], which accounts for the dissipation and
dephasing of the excited state. The renormalization term is
omitted here. To simplify the description, we assume that
V 1 � V 2 � V . The decay rate of the excited states into the
waveguided mode is Γ � V 2∕vg , and the spontaneous emis-
sion lifetime of the molecule is τ0 � 1∕Γ [8,9], which is taken
to be 100 ps.

The scattering process is given by the Schrödinger equa-
tion iℏ∂t jϕ�t�i � H jϕ�t�i, where the wavefunction jϕ�t�i
describes both the photons and the fluorescent molecule, with
the specified photonic excitation and the molecular state as the
initial conditions. The equations of motion are evolved numeri-
cally in time to trace out the full spatiotemporal dynamics of
the scattering process [15]. In particular, the excitation ampli-
tude ea�t� of the excited molecular state jei is recorded for each
excitation scheme (dimer, Δ; long pulse, ◯; short pulse, +).
Figure 2(a) plots the excitation efficiency

R jea�t�j2dt (the in-
tegration is over the duration of the optical excitation). As the
excitation efficiency is the number of photons absorbed per
fluorophore, it can be shown to be related to the two-photon
cross section σ2p as

R jea�t�j2dt � σ2p∕�TA2�, where A is the
diffraction-limited area of the pulse [4]. Multiplied by the
quantum yield η, the quantity η

R jea�t�j2dt is proportional
to the number of fluorescence photons (fluorescence signal
strength). Numerically, it is found that, up to δ ≃ 4Γ (small-
detuning limit), the excitation efficiency of the dimer outper-
forms that of the short and the long pulses. As the detuning is
much less than the frequency bandwidth of the short pulse
(1.6%), the excitation efficiency by a short pulse remains
constant in Fig. 2(a). The excitation efficiency of the photonic
dimer and the long pulse, however, decreases gradually. For
large frequency detuning, as is the case for typical fluorescence
molecules (δ ≃ 104Γ), the excitation efficiency for all schemes
becomes exponentially small, and an accurate numerical com-
putation of the efficiency is extremely challenging. In the
following, we present a time–frequency conjugate (TFC)
model for computing the excitation efficiency. As will be seen
below, at the small-detuning limit, the TFC model agrees well
with the rigorous numerical results for all three excitation
schemes, while at the large-detuning limit, the predicted
short-pulse excitation efficiency is compatible with the results
inferred from the experiments.

The TFC model incorporates the pulse nature to account
for TPE in both the time and the frequency domain. In the
time domain, the joint probability density of two photons
to arrive at the fluorescence molecule is given by the
second-order correlation function G�2��t1, t2� ≡ hϕinjâ†�t2�
â†�t1�â�t1�â�t2�jϕini, where jϕini is the input two-photon
state, and â�t1� is the photon annihilation operator evaluated
at the location of the fluorescence molecule. We consider
the two-photon excitation process jgi → jii → jei as two
successive single-photon transitions, each between a pair of
energy levels (jgi to jii then to jei), with the second transition
being conditioned by the occurrence of the first transition

Fig. 1. Two-photon excitation process. (a) A two-photon pulse in-
teracting with a fluorescent molecule. (b), (c), (d) Probability density
plots of two-photon optical excitation in time scale. (b) A long
Gaussian pulse with T � 1 ns. (c) A short Gaussian pulse with
T � 200 fs. (d) A photonic dimer with T � 1 ns and τ � 50 ps.
(e) Joint-frequency spectrum of the photonic dimer described in
(d). All density plots are normalized to the same color range.
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(Fig. 1). As the intermediate state couples to the waveguide and
the environment, thus a spontaneous decay with a lifetime τ0
takes place after being excited by the first photon at t1, and the
amplitude of the intermediate state jii of the molecule
becomes e−�t2−t1�∕τ0 when the second photon arrives at t2.
In the frequency domain, the excitation amplitude for a
single-photon two-level transition is given by A�δ�ω� �ffiffiffi
Γ

p
∕�ω − Ω − δ� iΓ� [16], where ω is the frequency of the

illuminating photon, and δ is the frequency detuning.
Combining these considerations, the two-photon excitation
efficiency is proportional to Pt × Pf , where

Pt �
Z �∞

−∞
dt

Z �∞

0

dΔtG�2��t, t � Δt�e−ΓΔt , (2)

Pf �
����
Z

dω1dω2

2π
F �ω1�A�δ�ω1�F �ω2jω1�A−δ�ω2�

����
2

, (3)

where Δt ≡ t2 − t1, F �ω1� is the frequency distribution of the
first arrival photon, and F �ω2jω1� is the conditional frequency
distribution of the second photon. We apply the TFC model to
all three excitation schemes. For the Gaussian pulses, the two
photons are independent, and one has F �ω2jω1� � F �ω2�.
Thus the excitation efficiency is

κ

�ZZ
2

πT 2 e
−
2�t−t0�2

T2 −
2�t�Δt−t0�2

T 2 −Δtτ0 dΔtdt
	

×
����
ZZ

dω1dω2

�2π�2
e−�ω1−Ω�2T 2

4 −�ω2−Ω�2T 2

4 TΓ
�ω1 −Ω−δ� iΓ��ω2 −Ω�δ� iΓ�

����
2

, (4)

where the proportionality κ accounts for all other matrix
elements of the transitions (to be determined numerically),
and t0 � −x0∕vg is an irrelevant reference point. All variables
can be rescaled by Γ � 1∕τ0. In contrast, for a two-photon
dimer, the frequency distribution is essentially determined
by the Fourier transform of the relative wavefunction when
τ ≪ T :Z �∞

−∞

Z
x1

−∞

dx1dx2
2π

N 0e−
γ
vg
�x1−x2��iΩvg �x1�x2�−ik1x1−ik2x2

� N 0

γ � i�ω1 − Ω�
δ�ω1 � ω2 − 2Ω�, (5)

where N 0 is a normalization factor, and ω1,2 � k1,2vg . The
frequency distribution of the first photon is Lorentzian with
F �ω1� � N 0∕�γ � i�ω1 −Ω�� and of the second photon is
F �ω2jω1� � δ�ω1 � ω2 − 2Ω�. Thus the excitation efficiency
becomes

κ

�ZZ
jN 0j2e−

4�t−t0�2
T2 −

4Δt�t−t0�
T 2 −Δtτ0

−Δtτ dΔtdt
	

×
����
Z

dω
2π

iN 0Γ
�ω − Ω − iγ���ω −Ω − δ�2 � Γ2�

����
2

: (6)

The temporal part is approximately equal to
jN 0j2T ffiffiffi

π
p

∕�2∕τ0 � 2∕τ� when τ ≪ T (the limit of practical
interest). For large detuning, Pf ∝ 1∕δ2 as the integrand is
maximized at ω � Ω� δ. In contrast, for short pulses,
Pf ∝ 1∕δ4, which is much smaller than a dimer for large δ.

Here we compute the TPE efficiency by the spontaneous
parametric down-converted photon pairs (SPDC), which are

also frequency anti-correlated, but with a Gaussian distribu-
tion: ϕin�x1,x2� �N 0 0 exp�−�x1 − x2�2∕4σ2s � iΩ�x1� x2�∕
vg − �x1 − x0�2∕4σ2 − �x2 − x0�2∕4σ2� with a coherence time
T � 2σ∕vg , a correlation time τ � 2σs∕vg , and a normaliza-
tion factor N 0 0. In the long pulse approximation (T ≫ τ),
one has F �ω2jω1� � δ�2Ω − ω1 − ω2�, and the excitation
efficiency for SPDC photon pair is

κ

�ZZ
jN 0 0j2e−

2�t−t0�2
T2 −

2�t�Δt−t0�2
T 2 −Δtτ0

−Δt
2

τ2 dΔtdt
	

×
����
Z

dω

2π

N 0 0 ffiffiffi
π

p
τΓe−τ2�ω−Ω�2∕4

��ω − Ω − δ�2 � Γ2�

����
2

: (7)

The excitation efficiency of the SPDC photon pair is also
plotted in Fig. 2 (SPDC:×), with the same correlation time
50 ps. For small detuning (δ ≲ 5Γ), a SPDC photon pair is
as efficient as a dimer. However, for large detuning
(δ ≳ 102Γ), the SPDC frequency distribution decays exponen-
tially, resulting in an exponentially small amplitude (∝ e−τ2δ2∕4)
at the transition resonance (ω ≈ Ω� δ); it turns out that the
amplitude at the photon center frequency (ω ≈ Ω) dominates,
which is ∝ 1∕δ2. Consequently, the SPDC photon pair is also
frequency anti-correlated, Pf ∝ 1∕δ4. We note that if the
interferences between the atomic excitation amplitudes are ne-
glected, one obtains an overestimated efficiency Pf ∝ 1∕δ2 [6].

The TFC model described above provides the key tool
for investigating the excitation efficiency at a large-detuning
limit that is beyond the ab initio computational approach.
Figure 2(b) plots the excitation efficiency over a wide range
of δ up to 106Γ for all excitation schemes. The unknown
constants κ, N 0, and N 0 0 are fixed by equating to the rigorous
numerical results at only one point at δ � 0. The excitation
efficiencies given by the numerical results and by the TFC

Fig. 2. Excitation efficiency. (a) Numerical results (marks on the
curves) of the excitation efficiency for various excitation schemes at
the small-detuning regime. (b) The time–frequency conjugate model
(solid curves). The shaded area represents the range of the efficiency
of three fluorophores (proteins EGFP and DSRed2, and quantum dot
g-C3N4) estimated from experimental data. The dashed curve is the
result of the semiclassical second-order perturbation.
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model agree well throughout the small-detuning limit range.
The efficiency for the 1-ns-long pulse decreases rapidly at ap-
proximately δ ≃ 10Γ, while the efficiency for the 200 fs short
pulse eventually degrades at approximately δ ≃ 103Γ. In the
figure, the efficiency of three representative fluorophores
(proteins EGFP and DSRed2, and quantum dot g-C3N4) is
estimated from available experiments [17,18] via the aforemen-
tioned relation between the two-photon cross-section σ2p and
the excitation efficiency. At δ ≃ 104Γ, the dimers provide a
three-orders-of-magnitude improvement in the excitation effi-
ciency. We note that these fluorophores are off-resonance with
a large intermediate frequency detuning δτ ≃ 5 × 103, which is
beyond the applicability of the calculations in Ref. [5] that as-
sumes the limit δτ ≪ 1. In Fig. 2(b), we also provide the results
using the semi-classical single-frequency second-order pertur-
bation method (dashed curve). We also found numerically that
the excitation efficiency by the photonic dimers can be further
increased when the correlation time τ decreases when δ is large.
For a pulse containing N photon pairs, by assuming that each
pair interacts with the molecule independently, the total exci-
tation efficiency PN is given by a simple probabilistic model as
PN � 1 − �1 − P�N , where P � R jea�t�j2dt is the single pair
excitation efficiency. For a typical pulse containing N � 109 ∼
1013 photon pairs, since P is ≲10−13, a short pulse or SPDC
light, PN ≈ NP, that is, the well-known TPE linear intensity
dependence is recovered [3,5]. However, when P is enhanced
to ≳10−10 as is in the case for the dimer, PN ≈ 1 − e−NP , which
deviates from the linear intensity dependence.

The first experimental confirmation of the photonic dimers
is in the cold atom system [10]. Here we investigate two ap-
proaches for generating dimers in solid-state platforms. The
first approach is to launch a single resonant photon to interact
with an excited quantum dot (QD) (spontaneous lifetime τ0) in
a waveguide [Fig. 3(a)]. Figure 3(b) plots the two-photon prob-
ability density after scattering for the case T � 0.6τ0. The first
quadrant (RR branch) depicts two transmitted photons to the
right of the QD. To quantify the generation efficiency, we de-
fine the forward efficiency

ξf ≡
R
dE jhBE jϕ�t → �∞�iRRj2

RRhϕ�t → �∞�jϕ�t → �∞�iRR
,

where jBEi is the unmodulated photonic dimer state of energy
E [9] and jϕ�t → �∞�iRR is the two-photon wavefunction
in the forward RR branch. ξf gives the weight of the photonic
dimer in the forward scattering two-photon wavepacket.
Another useful matric is the total efficiency ξt, which is
defined by using the full-space state jϕ�t → �∞�i (in all four
quadrants) in the denominator instead. By varying the
coherence time T of the input, the maximum value of ξf
for the first approach [red curve in Fig. 3(c)] reaches 71%
when T � 0.6τ0, and ξt (black curve) reaches 35% when
T � 0.36τ0. In the second approach a two-photon Fock state
is injected to interact with a ground state QD [Fig. 3(d)].
Figure 3(e) plots the probability density for the case
T � 10τ0, and Fig. 3(f ) plots the generation efficiencies.
For the second approach, although ξt can reach nearly
100% for large T , ξt however is small as it is limited by the
low two-photon transmission. As the correlation time of the
generated photonic dimers is determined by the spontaneous
emission time of the quantum emitter, photonic dimers with

an ultrashort correlation time could be generated using ultra-fast
(<11 ps) yet efficient sources of spontaneous emission [19],
which further increases the excitation efficiency.
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�1∕2πσ2�1∕4e−�x−x0�2∕4σ2 eiΩx is incident on an excited QD. (b) Two-
photon probability density after scattering for T � 0.6τ0. (c) Total
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