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Abstract. Photoacoustic computed tomography (PACT) is an emerging computed

imaging modality that exploits optical contrast and ultrasonic detection principles

to form images of the photoacoustically induced initial pressure distribution within

tissue. The PACT reconstruction problem corresponds to a time-domain inverse source

problem, where the initial pressure distribution is recovered from the measurements

recorded on an aperture outside the support of the source. A major challenge in

transcranial PACT of the brain is to compensate for aberrations and attenuation in

the measured data due to the propagation of the photoacoustic wavefields through the

skull. To properly account for these effects, a wave equation-based inversion method

can be employed that can model the heterogeneous elastic properties of the medium.

In this study, an optimization-based image reconstruction method for 3D transcranial

PACT is developed based on the elastic wave equation. To accomplish this, a forward-

adjoint operator pair based on a finite-difference time-domain discretization of the

3D elastic wave equation is utilized to compute penalized least squares estimates

of the initial pressure distribution. Computer-simulation and experimental studies

are conducted to investigate the robustness of the reconstruction method to model

mismatch and its ability to effectively resolve cortical and superficial brain structures.

1. Introduction

Photoacoustic computed tomography (PACT) is a noninvasive hybrid imaging modality

that combines the optical absorption contrast of tissue with acoustic detection (R.Kruger

et al., 1995; Kruger et al., 1999; Xu et al., 2011). In PACT, the target is illuminated

with a short optical pulse resulting in the generation of acoustic pressure signals via

the photoacoustic effect (Xu and Wang, 2006a; Oraevsky and Karabutov, 2003). The

acoustic waves propagate out of the object and are subsequently detected by use of a
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Iterative reconstruction for transcranial PACT 2

collection of wideband ultrasonic transducers that are located outside the support of the

object. Typically, the measured pressure signals are employed to estimate the induced

initial pressure distribution or, equivalently, if the Grueneisen parameter is known, the

absorbed optical energy distribution. The utility of PACT has been demonstrated in

a number of in vivo studies of biological structure and function and in facilitating a

number of medically relevant diagnostic tasks (Jones et al., 1980; Cheong et al., 2003; Xu

et al., 2011; Xia et al., 2014).

Transcranial brain imaging represents an important application that may benefit

significantly by the development of PACT methods. Existing high-resolution human

brain imaging modalities include X-ray computed tomography (CT), magnetic resonance

imaging (MRI), and positron emission tomography (PET). However, all suffer from

significant shortcomings (Raichle, 1998; Pearce et al., 2013; Goo, 2013; Boxerman

et al., 1995). Optical imaging modalities are desirable because they can provide

functional information based on the high haemoglobin-contrast between tissues that

contain different concentrations of blood. However, optical-only imaging, such as

DOT, suffers from inherently low spatial resolution in transcranial imaging (Culver

et al., 2003). On the other hand, PACT provides the same functional contrasts as optical

imaging but has a superior spatial resolution due to the principles of ultrasonic detection.

Hence, PACT is well-suited for anatomical and functional brain imaging applications. As

PACT exploits haemoglobin-based endogenous optical contrast, it can image anatomical

structures such as blood vessels as well as measure functional parameters, such as

oxygen saturation (sO2), and the metabolic rate of oxygen consumption (MRO2) (Yao

et al., 2011; Zhang et al., 2006).

In vivo transcranial PACT studies have revealed structure and haemodynamic

responses in small animals (Wang et al., 2003; Li et al., 2010; Xu et al., 2011). Because

the skulls in these studies were relatively thin (∼ 1 mm), they did not significantly

aberrate the photoacoustic wavefields. Hence, conventional PACT image reconstruction

algorithms such as backprojection (BP) (Kunyansky, 2007; Finch and Patch, 2004), that

assume that the entire medium is acoustically homogeneous were successfully employed.

This assumption is violated in transcranial PACT applications involving primate skulls.

As a result, images produced by conventional reconstruction methods in the presence of

a primate skull can contain significant distortions and degraded spatial resolution (Xu

and Wang, 2006b; Jin et al., 2008; Yang and Wang, 2008; Nie et al., 2011; Huang

et al., 2012). Thus, to render transcranial PACT an effective imaging modality for

use in humans, it is necessary to develop image reconstruction methodologies that can

accurately compensate for the skull-induced aberrations and attenuation of the recorded

photoacoustic (PA) signals.

Numerous image reconstruction methods have been proposed to compensate for

aberrations and attenuation of the measured PA wavefields induced by an acoustically

heterogeneous fluid medium (Huang et al., 2013; Jin et al., 2008; Huang et al., 2012).

However, a limitation of such works is that they assume a simplified wave propagation

model in which longitudinal-to-shear-wave mode conversion within the skull (Schoonover
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Iterative reconstruction for transcranial PACT 3

and Anastasio, 2011; White et al., 2006; Fry, 1978) was neglected. As a result of the

simplified models employed, only modest improvements in image quality were observed

as compared to the use of a standard BP-based reconstruction algorithm. Therefore,

there remains an important need for the development of improved reconstruction

methodologies for transcranial PACT that are based on more accurate models of the

imaging physics.

To circumvent limitations of the aforementioned approaches, a numerical framework

for image reconstruction in transcranial PACT based on an elastic wave equation

that describes an isotropic, lossy and heterogeneous medium was proposed and

validated (Mitsuhashi et al., 2017). In that work, a discrete forward operator

(i.e., imaging model) and an associated adjoint operator for transcranial PACT were

implemented based on the 3D elastic wave equation. The adjoint operator was validated

and employed as a reconstruction operator to compensate for aberrations introduced by

the skull. Even though the adjoint operator may perform better than existing filtered BP

methods in compensating for the acoustic and elastic properties of the skull, the use of

the adjoint operator as a reconstruction operator possesses limitations. For instance, for

a lossy medium and/or a sparsely sampled measurement aperture, the adjoint operator

is not a good approximation of the inverse operator.

Furthermore, the use of an adjoint operator as a reconstruction operator does not

provide a general framework for incorporating regularization that can help mitigate

the effects of measurement noise and incomplete measurement data. Hence, the use of

the adjoint operator to directly reconstruct images can result in suboptimal contrast

and suboptimal tradeoffs between image variance and spatial resolution. The use of

the optimization-based image reconstruction methods proposed in this work can help

circumvent these shortcomings. In other works, the adjoint of the continuous wave

operator, which describes the propagation of PA waves in linear isotropic viscoelastic

media has been proposed (Javaherian and Holman, 2018). Such studies have not

explored image reconstruction problems with realistically sized 3D volumes or utilized

experimentally acquired data.

In transcranial PACT, the head is illuminated from the outside with a near-infrared

optical pulse resulting in the generation of acoustic pressure signals via the photoacoustic

effect. As the scalp vessels can strongly absorb the illuminated light, only a small fraction

of the illuminated light or optical fluence makes its way to the cortex resulting in the

generation of initial pressure distribution in the cortex. Hence, there is a large difference

in amplitude between the photoacoustically induced initial pressure distribution in the

cortex and the photoacoustically induced initial pressure distribution in the scalp. Thus,

spatially resolving the weak cortical structures from the strong scalp or superficial

structures poses a significant challenge for image reconstruction (Nie et al., 2012). A

challenge for any transcranial PACT reconstruction algorithm is to be able to accurately

reconstruct the cortical structures in the presence of large differences in amplitude

between the initial pressure distribution generated in the cortex and the initial pressure

distribution generated in the scalp. Furthermore, in most transcranial PACT image
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Iterative reconstruction for transcranial PACT 4

reconstruction algorithms it is assumed that the acoustic properties of the skull are

known accurately beforehand. However, such information may be difficult to obtain in

practice. Any inaccuracies in modeling the acoustic properties of the skull will be a

source of model mismatch error in conventional image reconstruction algorithms. Thus,

an additional challenge for a transcranial PACT reconstruction algorithm is to be able

to robustly model errors arising from inaccurate modeling of the acoustic characteristics

of the skull.

Given the previously developed numerical framework for implementing the forward-

adjoint operator pair (Mitsuhashi et al., 2017), a natural topic of investigation is to

explore the use of these operators in studies of optimization-based image reconstruction.

Hence, in this work a modern optimization-based iterative image reconstruction

algorithm for transcranial PACT is proposed and its performance in overcoming the

aforementioned challenges is evaluated through computer-simulation and experimental

studies. The computer-simulation studies explore the robustness of the optimization-

based image reconstruction algorithm to noise as well as the model mismatch errors. In

the presence of large differences in amplitude between the initial pressure distribution

generated in the scalp and the initial pressure distribution generated in the cortex, the

performance of the optimization-based reconstruction method (OBRM) in accurately

spatially resolving the cortical and superficial structures is also investigated through

computer-simulation and experimental studies.

The article is organized as follows. In Section 2, the physics of elastic wave

propagation in elastic media is reviewed along with the modern optimization-based

formulation of the image reconstruction problem. A description of the computer-

simulation studies and a discussion of the corresponding results is provided in Section 3.

In Section 4, the experimental phantom studies are described and the article concludes

with a summary in Section 5.

2. Background

2.1. Photoacoustic wavefield propagation: Continuous and discrete formulation

Let the photoacoustically-induced stress tensor at location r ∈ R3 and time t ≥ 0 be

defined as

σ(r, t) ≡

 σ11(r, t) σ12(r, t) σ13(r, t)

σ21(r, t) σ22(r, t) σ23(r, t)

σ31(r, t) σ32(r, t) σ33(r, t)

 , (1)

where σij(r, t) represents the stress in the ith direction acting on a plane perpendicular

to the jth direction. Additionally, let p0(r) denote the photoacoustically-induced initial

pressure distribution within the object, referred to as the object function, and let u̇(r, t)

≡ (u̇1(r, t), u̇2(r, t), u̇3(r, t)) represent the vector-valued acoustic particle velocity. Here,

ρ(r), λ(r) , and µ(r) represent the spatial distribution of the medium’s density and the
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Iterative reconstruction for transcranial PACT 5

spatial distribution of the Lamé parameters, respectively. The compressional and shear

wave propagation speed are given by cl(r) =
√

λ(r)+2µ(r)
ρ(r)

and cs(r) =
√

µ(r)
ρ(r)

, respectively.

The object function p0(r) and all functions that describe the elastic isotropic medium are

assumed to be bounded with compact supports. Here, we model acoustic absorption of

the skull by a diffusive absorption model (Moczo et al., 2007). The diffusive absorption

model assumes that the wavefield absorption is independent of temporal frequency; this

model does not accurately describe the power law based frequency-dependent absorption

characteristics of soft tissue and bone (Szabo, 1994; Treeby and Cox, 2014). This model,

however, is sufficiently accurate in cases where the bandwidth of the photoacoustic

signals is limited. Moreover, the model also assumes that the shear absorption to

compressional absorption ratio is given by the compressional velocity to shear velocity

ratio. This is approximately true in bone, because slower shear waves are, in fact,

more attenuated than faster compressive waves (Pinton et al., 2011). The model also

assumes that for fluid media (soft tissue), the diffusive absorption value only describes

the absorption of compressional waves as shear waves are not supported in fluid media.

In a heterogenous isotropic elastic medium with a diffusive acoustic absorption

distribution α(r), the propagation of u̇(r, t) and σ(r, t) can be modeled by the following

two coupled equations (Boore, 1972; Virieux, 1986; Madariaga et al., 1998; Alterman

and Jr., 1968):

∂tu̇ (r, t) + α (r) u̇ (r, t) =
1

ρ (r)

(
∇ · σ (r, t)

)
(2a)

∂tσ (r, t) = λ(r)tr(∇u̇ (r, t))I + µ(r)(∇u̇ (r, t) +∇u̇ (r, t)T ) (2b)

subject to the initial conditions

σ0(r) ≡ σ(r, t)|t=0 = −1

3
p0(r)I, u̇ (r, t) |t=0 = 0. (2c)

Here, tr (·) is the operator that calculates the trace of a matrix and I ∈ R3×3 is the

identity matrix. In Eq. (2c), the object function p0(r) is assumed to be compactly

supported in a fluid medium where the shear modulus µ(r) = 0. Hence, the formulation

of the initial value condition assumes that there are no optical absorbers inside the

elastic solid.

Consider that p(r0, t) = tr(σ(r0, t)) is recorded outside the support of the object

for r0 ∈ ∂Ω and t ∈ [0, T ], where ∂Ω ⊂ R3 denote a measurement aperture. In this case,

the imaging model can be described by a continuous-to-continuous (C-C) mapping as:

p(r0, t) =MHp0(r), (3)

where r ∈ Ω and H : L2(Ω) 7→ L2(Ω× [0, T ]) is a linear operator that denotes the action

of the wave equation given in Eq. (2). Moreover, p(r0, t) ∈ L2(∂Ω× [0, T ]) denotes the

measured data function, and the operator M is the restriction of H to ∂Ω× [0, T ].

In practice, the detected pressure wavefield is discretized temporally and spatially

at specific transducer locations. Let p ∈ RNrL denote the discretized pressure signal,

Page 5 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMB-109625.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Iterative reconstruction for transcranial PACT 6

where Nr represents the number of transducers and L represents the total number of

discrete temporal samples. In the imaging model described in Eq. (3), the effects of

the acousto-electrical impulse response (EIR) as well as the spatial impulse response

(SIR) of the transducer have been ignored. However, the transducer responses can be

incorporated into the imaging model readily (Huang et al., 2013). A continuous-to-

discrete (C-D) PACT imaging model, can be generally expressed as

[p]kL+l = p(r, t)|r=rk0 ,t=l∆
t (4)

for k = 0, 1, 2, ..., Nr − 1 and l = 0, 1, 2, ..., L − 1. Here, ∆t is the temporal sampling

interval and the vectors rk0 ∈ R3, k = 0, 1, 2, ..., Nr − 1, represent the position vectors of

the Nr receivers on the aperture ∂Ω.

To obtain a discrete-to-discrete (D-D) imaging model for use with an OBRM,

finite-dimensional approximate representations of the object function p0(r) and the

material parameters ρ(r), α(r), λ(r), and µ(r) need to be introduced. In this study,

the numerical method employed to solve the wave equation in Eq. (2) was a 10th-

order staggered grid finite difference time domain (FDTD) scheme. Note that for the

staggered finite-difference (FD) scheme, the material properties, stress, and particle

velocity functions are sampled at different points of a staggered FDTD cell as shown

in Fig. 1. Let ρ,α,λ,µ, and p0 ∈ RN be the finite dimensional representations of ρ(r),

α(r), λ(r), µ(r) and p0(r), respectively, where N is the total number of grid points on

the 3D grid. For a given ρ,α,λ,µ, and p0, the FDTD method for solving the elastic

Figure 1: A staggered-grid FD cell with positions of the wavefield variables (Moczo

et al., 2007).

wave equation can be described in operator form as

p = MHp0, (5)

where H ∈ RNL×N is the discrete approximation of the wave operator H that solves the

initial value problem defined in Eq. (2) and M ∈ RNrL×NL is a sampling matrix that

maps pressure data sampled on the computational grid onto the transducer locations.

In this study, the transducers are assumed to be point-like and thus when the receiver
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Iterative reconstruction for transcranial PACT 7

and grid point locations do not coincide, an interpolation method is required. In this

study, the elements of M are chosen such that trilinear interpolation is performed. The

goal of image reconstruction in a discrete setting is to determine an estimate of p0 given

the measured data p and the forward model in Eq. (5).

In our previous work, the use of the adjoint operator as a reconstruction operator

was investigated (Mitsuhashi et al., 2017). The reconstructed estimate of p0 obtained

by use of the adjoint operator is given by

p̂0 = HTMTp. (6)

2.2. Optimization-based image reconstruction method (OBRM)

By use of the proposed D-D imaging model defined in Eq. (5), a variety of OBRMs

can be employed for determining estimates of p0. In this work, we utilize an iterative

reconstruction algorithm that seeks to compute penalized least squares estimates (PLS)

by solving

p̂0 = argmin
p0≥0

||p−MHp0||22 + γR(p0), (7)

where γ is a regularization parameter and R(p0) is a regularizing penalty term. In the

studies below, the total variance (TV) semi-norm penalty, given by

R(p0) = ||p0||TV =
N∑
n=1

{
([p0]n − [p0]n1−)2 + ([p0]n − [p0]n2−)2 + ([p0]n − [p0]n3−)2

} 1
2
,

(8)

was employed. Here, [p0]n denotes the nth grid node, and [p0]n1− , [p0]n2− , and

[p0]n3− are the neighboring nodes before the nth node along the first, second and

third dimension, respectively. The fast iterative shrinkage/thresholding algorithm

(FISTA) with backtracking linesearch and adaptive restart was employed to solve the

optimization problem in Eq. (7) (Beck and Teboulle, 2009a; Beck and Teboulle, 2009b;

Beck, 2014; O’donoghue and Candes, 2015).

3. Computer-simulation studies

The performance and robustness of the proposed OBRM was initially evaluated by use

of computer-simulation studies as described below. Additionally, computer-simulation

studies that assess the performance of the OBRM in the presence of measurement noise

and the effects of TV regularization are summarized in Appendix A.

3.1. Resolution of superficial and cortical structures

As a consequence of the large differences in amplitude between the initial pressure

distribution generated in the cortex and the initial pressure distribution generated in the
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Iterative reconstruction for transcranial PACT 8

(a) (b) (c)

Figure 2: The maximum intensity projections of the numerical phantom that represents

the 3D initial pressure distribution along (a) x-, (b) y- and (c) z-axes, respectively.

scalp, spatially resolving the weak cortical structures from the strong scalp or superficial

structures poses a significant challenge for transcranial image reconstruction (Nie

et al., 2012). A computer-simulation study was performed to evaluate the performance

of the proposed OBRM in accurately reconstructing cortical structures in the presence

of strong absorbers in the scalp.

3.1.1. Methods To study the performance of the OBRM in resolving scalp and cortical

structures, the numerical blood vessel phantom shown in Fig. 2 was employed. The

superficial blood vessels located in the scalp and the cortical vessels are visible in the

maximum intensity projection (MIP) images. For display purposes, the dynamic range

was adjusted so that the cortical vessels are visible; as a result, the superficial vessels

appear saturated. The optical fluence ratio between the superficial and cortical vessel

was assumed to be 50 (Nie et al., 2012). Hence, the ratio of initial pressure distribution

between superficial and cortical blood vessels in the phantom shown in Fig. 2 was set to

50. A 3D computational volume of 408.0 mm × 408.0 mm × 190.2 mm was employed.

A 3D approximately hemispherical measurement system, as shown in Fig. 3(a), was

emulated. The measurement system consisted of a total 38400 transducers distributed

evenly across 64 rings. The measurement system was similar to the experimental system

used for acquisition of pressure data as described in Section 4. The position of the

measurement system with respect to the skull is shown in Fig. 3(b).

A 3D X-ray CT image of an intact human skull was utilized to generate the

isotropic, elastic medium employed for the simulation studies. The CT images of the

skull were employed to infer the thickness and contour of the skull and place it within

the 3D simulation volume. For this set of simulation studies, the skull was assumed

to be an acoustically homogeneous. In reality, however the skull bone is acoustically

heterogeneous and consists of three relatively homogeneous layers: the outer table, inner

table and the central diploe layer (Sadleir and Argibay, 2007; Marieb, 2011).

In order to extract the contour and location of the skull from CT images, a

segmentation algorithm was employed. The segmentation algorithm generated a binary
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Figure 3: (a) The map of transducer locations employed for the simulation studies.

(b) The position of the skull relative to the transducer locations.

mask specifying the location of the skull within the 3D volume. The value of the medium

parameters in the 3D volume were assigned such that the skull acoustic parameters

(ρ = 1850 kg
m3 , cl = 3.0 mm

µs
, cs = 1.48 mm

µs
and α = 0.75 1

µs
) were set at all grid

positions where the mask was equal to one and the background acoustic parameters

(ρ = 1000 kg
m3 , cl = 1.5 mm

µs
, cs = 0.0 mm

µs
and α = 0.0 1

µs
) were set all grid positions

where the mask was equal to zero. At the material interface between the skull and the

background fluid medium, the density and the absorption values were averaged to avoid

any instability with the FDTD wave equation solver (Moczo et al., 2007).

Different discretization strategies were employed to generate the simulated pressure

data and to reconstruct the initial pressure distribution, thereby avoiding inverse

crime (Colton and Kress, 2013). The simulated pressure data were generated by use of

a spatial grid size of ∆x = 0.225 mm and a temporal sampling rate of 50 MHz . The

simulated pressure data were corrupted white Gaussian noise with a standard deviation

10 percent of the maximum amplitude of cortical signals.

3.1.2. Results The MIP images of the 3D volumes reconstructed by use of the

adjoint operator and the OBRM are shown in Figs. 4(a) to 4(c) and Figs. 4(d)

to 4(f), respectively. Each column of images represents the MIPs of the reconstructed

initial pressure distribution along the x-, y- and z-axes, respectively. All images were

reconstructed with a uniform spatial grid sampling of ∆x = 0.3 mm. From Figs. 4(a)

to 4(c), it is observed that the images produced by use of the adjoint operator do

not clearly reveal the cortical vessels. This is because the bleed down effect from the

superficial structures overwhelms the signal from the cortical structures. However this

is not the case in the images reconstructed by use of the OBRM, as shown in Figs. 4(d)

to 4(f). In these images, the superficial vessels are accurately resolved because the
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(a) (b) (c)

(d) (e) (f)

Figure 4: The MIP of the reconstructed 3D initial pressure distribution. The first

row of images corresponds to images reconstructed using the matched adjoint operator.

The second row of images corresponds to images reconstructed using the OBRM. Each

column of images corresponds to the MIP of the 3D initial pressure distribution along

x-, y- and z-axes, respectively.

strong signals from the superficial vessels are spatially separated and do not overwhelm

the cortical vessels. The OBRM was successful in improving the resolution of the

superficial structures, thereby reducing the amount of contamination that affects the

cortical structures. Hence, compared to the images reconstructed by use of the adjoint

operator, the cortical vessels are prominent and visible in the images reconstructed by

use of the OBRM.

3.2. Model mismatch studies

The proposed OBRM requires that the acoustic properties of the skull are known.

However, such information may be difficult to obtain in practice. Any inaccuracies

in modeling the acoustic properties of the skull will be a source of model mismatch

error in Eq. (5). Model mismatch errors can result in artifacts in the reconstructed

images. Hence, in this section, computer-simulation studies were conducted to evaluate

the robustness of the proposed OBRM to model mismatch.

There are at least two major types of skull model errors/mismatches that are

challenging to account for in OBRM. The first source of model mismatch resides in

the inaccuracies in modeling the frequency-dependent absorption characteristics of the
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Iterative reconstruction for transcranial PACT 11

skull (White et al., 2006; Fry, 1978). In transcranial PACT imaging applications, the

acoustic absorption is not negligible. In the initial value problem described in Eq. (2),

the acoustic absorption within the skull was described by a diffusive absorption

model (Aubry et al., 2003). The model ignores the fact that the wavefield absorption

within the skull is dependent on the temporal frequency of the PA signals (White

et al., 2006). This approximation, however, may be only reasonable for cases where

the bandwidth of the PA signals are limited (Aubry et al., 2003). Computer-simulation

studies were performed to explore the feasibility of the proposed OBRM when there was

significant model mismatch with respect to accurately modeling the acoustic absorption

characteristics of the skull.

The second major source of model mismatch that we commonly encounter originates

from the failure to model the presence of acoustic heterogeneities within the skull.

Various adjunct imaging data based methods as well as joint reconstruction methods can

be employed to account for acoustic variations in the skull in the proposed optimization-

based image reconstruction framework (Matthews et al., 2018; Poudel et al., 2018; Huang

et al., 2016). A study of these techniques is beyond the scope of this study.

3.2.1. Methods To study the impact of model mismatch associated with acoustic

absorption, the cortical blood vessel phantom shown in Fig. 5 was employed. The

forward pressure data were generated employing a skull model that had linear frequency-

dependent absorption characteristics. The linear dependence of the compressional wave

absorption value with respect to frequency is shown in Fig. 6(a). The slope of the

linear frequency-dependent was 16 dBcm−1MHz−1. The shear wave absorption value is

dependent on the ratio between the compressional speed and shear speed. Hence, for

the configuration described in Fig. 6(a), the shear wave absorption characteristics will

be linear with respect to frequency and will have a slope of 32 dBcm−1MHz−1.

In order to generate the simulated pressure data that modeled the frequency-

dependent absorption characteristics of the skull, multiple runs of the imaging model

with different diffusive absorption values had to be performed. This is due to the

fact that the imaging operator in Eq. (5) assumes a diffusive absorption model where

the absorption coefficient value is independent of frequency of PA signals. In order

to account for the frequency-dependent absorption characteristics of the skull, multiple

runs of the imaging operator and filtering operations need to be performed. A schematic

describing the generation of the forward pressure data from a skull model with frequency-

dependent absorption characteristics is shown in Fig. 6(b). The set of discrete diffusive

absorption coefficient values {αi}Nbin−1
i=0 used to generate the forward data are given by

αi = α0fi, where α0 is the linear slope value of the frequency-dependent absorption

model. Here, Nbin are the number of frequency bins and fi represents the central

frequency of the each bin. Let ∆f be the size of each frequency bin. To generate

the pressure data, the frequency spectrum was discretized into different bins and the

corresponding diffusive absorption value is assigned based on the central frequency of

the bin. Hence, each frequency band was assigned its own constant diffusive absorption
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Iterative reconstruction for transcranial PACT 12

(a) (b) (c)

Figure 5: The maximum intensity projections of the 3D initial pressure distribution

along (a)x-, (b) y- and (c) z-axes, respectively.

coefficient value that was calculated based on the frequency-dependent absorption

characteristics shown in Fig. 6(a). Subsequently, pressure data corresponding to each of

the diffusive absorption value αi were generated using the imaging model H(αi). Here,

H(αi) represents the D-D imaging model when the diffusive acoustic absorption value of

the skull was set to αi. The pressure data corresponding to each fi are then subsequently

filtered and summed to generate the final pressure data. Hence, the final pressure

data contains contribution from all the frequency bands that have been appropriately

weighted based on the action of the imaging operator H(αi) and the filtering operation.

For the simulation studies, we assume Nbin = 10 and ∆f = 0.2 MHz.

The same 3D computational volume and the measurement geometry employed

in Section 3.1 were utilized. Furthermore, different discretization strategies were

employed to generate the simulated pressure data and to reconstruct the initial pressure

distribution. The simulated pressure data were generated using a spatial grid size of

∆x = 0.225 mm and a temporal sampling rate of 50 MHz . The simulated pressure

data were corrupted with white Gaussian noise with a standard deviation 5 percent of

the maximum amplitude of cortical signals before the application of the reconstruction

method. The OBRM employed a diffusive absorption model with a fixed skull absorption

coefficient for image reconstruction. All other acoustic properties of the skull other than

the absorption coefficient value were assumed to be known.

3.2.2. Results The MIPs of the 3D images reconstructed by use of the OBRM

are shown in Fig. 7. Each column of images represent the maximum intensity

projections of the reconstructed initial pressure distribution along the x-, y- and z-axes,

respectively. Each row of Fig. 7 displays images reconstructed with a different diffusive

absorption value. All the reconstruction was performed with a spatial grid sampling of

∆x = 0.3 mm . From Fig. 7, one can observe that the minimum root mean square

error (RMSE) was obtained for the initial pressure distribution reconstructed with a

diffusive absorption value of α = 0.75 1
µs

. The optimal value of the diffusive absorption

value of α = 0.75 is associated with a central frequency of 0.5 MHz and the frequency
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Linear frequency dependent absorption characteristics of the skull

(a) (b)

Figure 6: (a) The linear frequency-dependent compressional wave absorption

characteristics of the skull. (b) A schematic describing the generation of forward data

when employing the frequency-dependent absorption model.

bin of [0.4 MHz, 0.6MHz]. The optimal diffusive absorption value is defined as the

diffusive absorption value associated with the OBRM that produced images with the

lowest RMSE. The optimal absorption value was associated with the frequency band

that contains the most energy in the measured pressure data. From the results, one can

observe that the model mismatch due to inaccuracy in modeling for frequency-dependent

characteristics of the skull can be accounted for by using a diffusive absorption model,

as long as the diffusive absorption value is representative of the dominant frequency

band in the measured pressure data. The line profiles through the reconstructed 3D

images, shown in Fig. 9(a), also emphasize these observations.

The MIPs of the reconstructed 3D images reconstructed by use of the adjoint

operator are shown in Figs. 8(a) to 8(c). The adjoint operation was performed with the

optimal diffusive absorption value of α = 0.75 1
µs

. From Fig. 7 and Figs. 8(a) to 8(c),

the contrast of the images obtained using the adjoint as the reconstruction operator

is observed to be poor compared to the images obtained using the OBRM. The sharp

difference in contrast can be also be observed by comparing the line profiles through the

reconstructed images shown in Fig. 9(b).

In summary, one can observe that the impact of the failure to model the frequency-

dependent absorption characteristics of the skull results in blurring of the reconstructed

images. However, the impact of model mismatch errors on the accuracy of the

reconstruction can be minimized by employing diffusive absorption value associated

with the dominant frequency band in the measured pressure data. This conclusion was

confirmed by calculating at the RMSE of the reconstructed pressure distribution with

different diffusive absorption values.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: The maximum intensity projections of the 3D initial pressure distribution

reconstructed by use of the OBRM. The first row of images corresponds to images

reconstructed using a diffusive absorption value of α = 0.45. The second row of images

corresponds to images reconstructed using a diffusive absorption value of α = 0.75, and

the third row of images corresponds to images reconstructed using a diffusive absorption

value of α = 1.05. Each column of images corresponds to MIP projections along x-, y-,

and z-axes, respectively.

4. Experimental studies

In this section, studies that utilized experimental PACT data produced by use of a

physical phantom are presented. Two sets of experimental PACT data were employed

to validate the proposed OBRM. The experimental phantoms and the setup employed

to acquire the measurement data are described below.
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(a) (b) (c)

Figure 8: The maximum intensity projections of the reconstructed 3D initial pressure

distribution using the adjoint operator with α = 0.75 along (a) x-, (b) y-, and (c) z-axes,

respectively.
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Figure 9: The line profiles through the 3D volumes reconstructed using (a) the OBRM

with different diffusive absorption values.(b) The line profile through the 3D volume

reconstructed using the adjoint operator (α = 0.75) is compared with the line profile of

the 3D volume reconstructed with the OBRM (α = 0.75).

4.0.1. Phantoms The design of the physical phantom employed for the experimental

studies was motivated by transcranial PACT. The phantom was comprised of a spherical

acrylic globe of thickness of 2.5 mm and an inner radius of 76.2 mm, placed within a

3D volume filled with water. The acrylic globe is an elastic solid that possesses acoustic

property values that are representative of a human skull.

For the experimental studies, two configurations of optical absorbing vessel-like

structures were employed with the acrylic globe. In the first configuration, referred

to as phantom #1, optically absorbing vessel-like structures were painted on the inner
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Iterative reconstruction for transcranial PACT 16

(a) (b)

Figure 10: Pictures of the vessels drawn on the inner surface of the acrylic globe.

(a) (b)

Figure 11: Pictures of the superficial structures placed outside the globe and the

cortical structures placed inside the globe

surface of the acrylic globe, as shown in Fig. 10. These vessels were intended to mimic

cortical vessels that reside near the top surface of a brain. Some of the cortical vessels

painted on the acrylic globe have been labeled in Fig. 10 and will be referred to in the

subsequent discussions. In the second configuration, also referred to as phantom #2,

strips of superficial absorbers were placed outside the acrylic globe along with cortical

vessels of phantom #1 as shown in Fig. 11. Hence, the experimental data obtained from

illuminating phantom #2 mimicked the more realistic scenario described in Section 3.1

whereby the PACT data were generated from cortical as well as superficial structures.
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Iterative reconstruction for transcranial PACT 17

(a) (b)

Figure 12: (a) The schematic of the experimental transcranial PACT imaging system.

(b) The position of the acrylic globe relative to the measurement system.

4.0.2. System A 64 element transducer arc was scanned over 600 evenly distributed

locations in the azimuthal direction in an approximately hemispherical configuration

as shown in Fig. 12 to acquire the experimental data. The location of the acquisition

system with respect to the acrylic globe is shown in Fig. 12(a). A short 6 ns laser pulse

(Nd-YAG Quantel Brilliant B laser) with a repetition rate of 10 Hz at a wavelength of

1064 nm was used to irradiate a sample located in the center of the measurement system

as shown in Fig. 12(a). The generated acoustic signals were detected by unfocused

transducers, with a center frequency of 1 MHz and a -6 dB fractional bandwidth of

80 %. The electrical signals recorded by the transducers were sampled at a temporal

sampling rate of 25 MHz. This system was employed to image the physical phantoms.

4.0.3. Data preprocessing Prior to image reconstruction, the measured data were

preprocessed. The preprocessing involved deconvolving the acquired EIR of the

transducer. The Wiener deconvolution method was employed to estimate the

deconvolved PA signals from the raw electrical transducer measurements. After

deconvolution, the data were filtered with a Hann-window low-pass filter with a cutoff

frequency of 2 MHz. The filtered data were also upsampled by a factor of 2.5, with the

goal of circumventing numerical stability issues with the wave equation solver.

4.1. Results

When employing either the adjoint operator or the OBRM for image reconstruction, the

acoustic parameters of the acrylic globe were set to be ρ = 1200 kg
m3 , cl = 2.8 m m

µs
, cs =

1.4 mm
µs

, and α = 0.1 1
µs

. Similar to the computer-simulation study, at the material

interface between the globe and the background fluid medium, the density and the
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Iterative reconstruction for transcranial PACT 18

absorption values were arithmetically averaged to avoid any instability issues with the

FDTD wave equation solver. The images reconstructed from experimental data are

shown in Figs. 13 and 14. The first set of results shown in Fig. 13 corresponds to an

experiment where the pressure data were generated by illuminating phantom #1. Each

column of images shown in Fig. 13, corresponds to 2D maximum intensity projections

of the reconstructed 3D volume along three mutually perpendicular directions. The

first row of images shown in Fig. 13 corresponds to images reconstructed by use of the

adjoint operator while the second row of images corresponds to images reconstructed

by use of the OBRM with no regularization.

The vessels in the reconstructed images in Fig. 13 are given the same labels (v1, v2,

v3) as the vessels shown in Fig. 10 to facilitate comparison between the reconstructed

images and the photographic images. Similar to the computer-simulation studies, the

contrast of the images reconstructed by use of the OBRM, shown in Figs. 13(d) to 13(f),

is significantly higher compared to that of the images reconstructed by use of the adjoint

operator shown in Figs. 13(a) to 13(c). The contrast was quantitatively evaluated in

3D region demarcated by the red bounding box shown in Fig. 13. The contrast was

evaluated by dividing the difference in mean signal intensity of the vessel structure

and the background in the selected 3D volume and dividing it by the variance of the

background signal. It was found that the contrast of the image reconstructed by use

of the the OBRM was 12.6 compared to a contrast of 3.2 for the image reconstructed

by use of the adjoint operator. Hence, an improvement of contrast by a factor of

approximately 4 was observed when the image was reconstructed by use of the OBRM

as opposed to reconstructed by use of the matched adjoint operator. Furthermore, one

can observe vessel like structures labelled v1, v2, v3 towards the outer periphery of the

images are distinctly visible in the images reconstructed by use of the OBRM while

the same structures are not in the images reconstructed by use of the adjoint operator.

The results in Fig. 13 demonstrate that the use of OBRM to reconstruct initial pressure

distribution within an elastic media can lead to significant improvement in image quality

compared to the images generated using the adjoint operator. The second set of

experimental results corresponding to pressure data generated by illuminating phantom

#2 is shown in Fig. 14. Each column of images shown in Fig. 14 have been generated

by performing MIP of the reconstructed 3D volume along three mutually perpendicular

directions. In addition, the first row of images shown in Fig. 14 corresponds to images

reconstructed by use of the adjoint operator while the second row of images corresponds

to images reconstructed by use of the OBRM with no TV regularization. In the images

reconstructed by use of the adjoint operator as shown in Figs. 14(a) to 14(c), the

signals from the superficial structures spread into the cortical region to considerably

degrade the image quality of the reconstructed cortical structures. In the computer-

simulation results obtained using the adjoint as a reconstruction operator, the cortical

structures were not visible as they were completely overwhelmed by signals from the

superficial structures. In the images reconstructed by use of the adjoint operator from

the experimental data, the signal from the superficial structures do not overwhelm the

Page 18 of 28AUTHOR SUBMITTED MANUSCRIPT - PMB-109625.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Iterative reconstruction for transcranial PACT 19

(a) (b) (c)

(d) (e) (f)

Figure 13: The maximum intensity projections along three mutually perpendicular

directions of the 3D cortical structures of phantom #1 reconstructed by use of the

(a)-(c) adjoint operator and, (d)-(f) the OBRM.

cortical structures to the same extent as shown in the images reconstructed with the use

of the adjoint operator in the computer-simulation studies. This is due to the fact that

the acrylic globe is far less absorbing than a human skull. Hence, the fluence mismatch

in the experimental setup using a acrylic skull is not high enough for the signals from

the superficial structures to completely overwhelm the cortical vessels in the images

reconstructed by use of an adjoint operator.

However, the signals from the superficial structures that contribute to obscuring

the cortical structures, is significantly mitigated in the images reconstructed with the

aid of the OBRM, as shown in Figs. 14(d) to 14(f). The vessel like cortical structures are

much more clearly visible in the images reconstructed by use of the OBRM as compared

to the images reconstructed by use of the adjoint operator. Hence, the results in Fig. 14

demonstrate that the OBRM is effective in accurately resolving the superficial structures

and is successful in mitigating the signals from superficial structures that contribute to

obscuring the cortical structures. This leads to significant improvements in image quality

of the reconstructed cortical structures when employing the OBRM as compared to the

adjoint operator.
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(a) (b) (c)

(d) (e) (f)

Figure 14: The maximum intensity projections along three mutually perpendicular

directions of the 3D cortical and superficial structures of phantom #2 reconstructed by

use of (a)-(c) the adjoint operator, and (d)-(f) the OBRM.

5. Conclusion

In this work, an OBRM for use in transcranial PACT was proposed and investigated.

The proposed method was based on the 3D elastic wave equation that accurately

modeled the physics of acoustic wave propagation in linear, isotropic elastic lossy,

heterogeneous media. Such modern reconstruction methods allow for accurate modeling

of the imaging physics and provide a general framework to incorporate regularization,

which can help mitigate the effects data incompleteness, model mismatch and noise.

The proposed OBRM was validated and investigated in computer-simulation and

experimental phantom studies whose designs were motivated by transcranial PACT

applications.

The computer-simulation and experimental studies compared and contrasted the

performance of the OBRM and the adjoint as a reconstruction operator. The

results from the studies demonstrated that the use of adjoint as a reconstruction

operator yielded reconstructed images that possessed suboptimal contrast. The images

reconstructed by use of the OBRM had improved contrast and also allowed for flexibility

in reconstructing images with improved tradeoff between image variance and spatial

resolution. Furthermore, the robustness of the OBRM to model mismatch was also

studied. The model mismatch associated with failure to model accurately the acoustic

absorption capabilities of the skull was explored through computer-simulation studies.
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The results demonstrated that when employing the OBRM, the failure to model the

frequency-dependent characteristics did not have a significant effect on the reconstructed

image quality when an appropriate diffusive absorption coefficient value was employed,

that corresponded to the dominant frequency band in the measured pressure data.

A challenge for any transcranial PACT reconstruction algorithm is to be able to

accurately reconstruct the cortical structures in the presence of large differences in

amplitude between the initial pressure distribution generated in the cortex and the initial

pressure distribution generated in the scalp. Hence, computer-simulation studies and

experimental phantom studies were conducted to explore the feasibility of the proposed

OBRM in resolving superficial and cortical structures. The results from both computer-

simulation and experimental phantom studies demonstrated that the OBRM is effective

in accurately resolving the superficial structures and cortical structures. The significant

improvement in the image quality of the cortical structures when employing the OBRM

was more pronounced when the difference in optical fluence between the scalp and the

cortex was high.

There remain several important topics for further investigation. One of the

major sources of model mismatch that we commonly encounter in transcranial PACT

originates from the failure to model the presence of acoustic heterogeneities within the

skull. Therefore, future studies should work towards formulation of joint reconstruction

problem for transcranial PACT applications. In such joint reconstruction formulations,

the optimization-based reconstruction procedure can be employed to reconstruct both

the initial pressure distribution and the spatial distribution of the skull acoustic

parameters concurrently.

Appendix A. General reconstruction studies

The performance of the OBRM with varying TV regularization parameters was

evaluated in the presence of measurement noise. The performance of the OBRM was

evaluated by comparing the image quality of the iteratively reconstructed images with

different regularization parameters with that of images reconstructed by use of the

matched discrete adjoint operator. Although employing the matched discrete adjoint

operator as a reconstruction operator allows one to compensate for the presence of elastic

media such as the skull, it is ineffective in compensating for measurement noise and also

yields images with suboptimal contrast.

Methods

The initial pressure distribution employed in the simulation studies mimicked cortical

blood vessels (CBVs). The numerical phantom, shown in Fig. 5, consisted of CBVs

positioned approximately 6 mm below the inner surface of the skull. The 2D maximum

intensity projection images along the x-,y-, and z-axes of the initial pressure distribution

are shown in Fig. 5. The same 3D computational volume and the measurement
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Iterative reconstruction for transcranial PACT 22

geometry employed in Section 3.1 were utilized. In addition, the skull model described

in Section 3.1 was used to simulate the pressure data. The simulated pressure data were

generated using a spatial grid sampling of ∆x = 0.225 mm and a temporal sampling

rate of 50 MHz . The simulated pressure data were corrupted with white Gaussian noise

with a standard deviation 5 percent of the maximum amplitude of cortical signals before

the application of the reconstruction operator.

Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A1: The MIPs of the reconstructed 3D initial pressure distribution by use

of the OBRM. The first row of images corresponds to images reconstructed with a

TV regularization value of γ = 0, the second row of images corresponds to images

reconstructed with a TV regularization value of γ = 0.05 and the third row of images

corresponds to images reconstructed with a TV regularization value of γ = 0.1. Each

column of images corresponds to MIP projections along x-, y-, and z-axes, respectively.

The MIP of the reconstructed 3D images using the OBRM are shown in Fig. A1. Each

column of images represent the MIP of the reconstructed initial pressure distribution

along the x-, y- and z-axes, respectively. Each row of images in Fig. A1 were
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Iterative reconstruction for transcranial PACT 23

reconstructed with a different TV regularization parameter value γ. The reconstruction

algorithm was performed with a spatial grid sampling of ∆x = 0.3 mm .

The images reconstructed by use of the OBRM with different TV regularization

parameter values show that with increased regularization, the images get less noisy

along with getting increasingly blurred. Hence, the tradeoff between variance and spatial

resolution with different regularization parameter values is illustrated by comparing the

reconstructed images shown in Fig. A1. The line profiles through the reconstructed

3D images, shown in Fig. 3(a), also illustrate the impact of TV regularization on

the mitigation of noise in the reconstructed image. The root mean square error

(RMSE) between the original initial pressure distribution and the reconstructed initial

pressure distribution is shown on the image corresponding to the projection along x-

axis in Fig. A1. The minimum RMSE was obtained for the initial pressure distribution

reconstructed with a TV regularization parameter value of γ =0.05.
The MIP of the reconstructed 3D images using the adjoint as the reconstruction

operator is shown in Figs. 2(a) to 2(c). From the images shown in Fig. A1 and Figs. 2(a)
to 2(c), we can observe that the contrast of the images obtained using the adjoint
operator as the reconstruction operator is poor compared to the images obtained using
the OBRM. The sharp difference in contrast can be also be observed by comparing the
line profiles through the reconstructed images shown in Figs. 3(a) and 3(b). Owing to
the lack of regularization in the adjoint formulation, the images reconstructed by use of
the adjoint operator are noisy and have poor image quality.

(a) (b) (c)

Figure A2: The maximum intensity projections of the reconstructed 3D initial pressure

distribution using the adjoint operator along (a) x-, (b) y-, and (c) z-axes, respectively.
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Figure A3: The line profiles through the 3D volumes reconstructed by use of the (a)

the OBRM with different values of TV regularization parameters. (b) The line profile

through the 3D volume reconstructed using the adjoint operator is compared with the

line profile of the 3D volume reconstructed with the OBRM (γ = 0.05).

Appendix B. OBRM algorithm

The proposed OBRM is described in detail in Algorithm 1. Since, the regularization

term is non-smooth, the use of accelerated proximal gradient-based methods like, FISTA,

can be employed to solve the optimization problem. The following notation to describe

the proximal operator of a scaled function κf , where κ > 0, is employed to describe the

algorithm

proxκf (v) ≡ argmin
x

(
f(x) +

1

2κ
||x− v||22

)
. (B.1)

For brevity, the following notation is employed

The data fidelity term, F (p0) ≡ 1

2
||g −MHp0||22 (B.2)

Gradient of the data fidelity term, G (p0) ≡ HTMT (MHp0 − g) (B.3)

The cost function, C(p0) ≡ F (p0) + γR(p0) (B.4)

The algorithm described in Algorithm 1 has a number of advantages over alternative

first-order optimization methods. First-order optimization methods refer to the set of

methods for which the computation of the descent direction involves a linear or first

order taylor approximation of the cost function. Hence, information about the gradient

of the function is employed to compute the descent direction. The FISTA method
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belongs to a subset of the first-order methods called the proximal-gradient methods

that permits the use of non-smooth regularization terms, such as the TV semi-norm.

Furthermore, it also belongs to a family of optimization methods that for weakly convex

optimization problems achieves the optimal asymptotic convergence rate (Beck and

Teboulle, 2009a; Beck and Teboulle, 2009b; Beck, 2014). Namely, for a weakly convex

function C(p0), FISTA obtains the convergence rate

C(p
(k)
0 )−min

p
(k)
0

C(p
(k)
0 ) ≈ O(

1

k2
) (B.5)

where k is the iteration number and p
(k)
0 is the estimate of the sought-after quantity for

the k-th iteration. The problem given by Eq. (7) represents a weakly convex optimiza-

tion problem whenever H is not full rank and R(θ) is convex.
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Algorithm 1 Adaptive FISTA with backtracking

Input: Initial guess to the initial pressure distribution p
(0)
0 , Measured data g,

Stopping criterion for the cost function ε,

Initial Lipschitz constant value for the linesearch algorithm L0, and

Scaling factor for the linesearch algorithm η.

Output: p̂0.

1: k ← 0 , where k is the iteration number.

2: t0 ← 1, εF ←∞
3: while ε < εF do

4: Compute G(k) ← HTMT
(
MHp

(k)
0 − g

)
5: ik ← 0, where ik is the linesearch iteration number

6: done ← false

7: while not done do

8: Lik ← ηikL0

9:

Q(k) ←
〈prox γ

Lik
R

p
(k)
0 −

G
(
p

(k)
0

)
Lik

− p
(k)
0

 ,G
(
p

(k)
0

)〉

+
Lik
2

∣∣∣∣∣∣prox γ
Lik
R

p
(k)
0 −

G
(
p

(k)
0

)
Lik

− p
(k)
0

∣∣∣∣∣∣2
2

10: if F

(
prox γ

Lik
R

(
p

(k)
0 −

G
(
p
(k)
0

)
Lik

))
≤
(
F
(
p

(k)
0

)
+Q(k)

)
then

11: done ← true

12: L← Lik
13: end if

14: ik ← ik + 1

15: end while

16: ptmp
0 ← p

(k)
0

17: p
(k)
0 ← p

(k)
0 −

G
(
p
(k)
0

)
L

18: tk+1 ←
1+
√

1+4t2k
2

and p
(k+1)
0 ← p

(k)
0 + tk−1

tk+1

(
p

(k)
0 − p

(k−1)
0

)
19: if C

(
p

(k+1)
0

)
> C

(
ptmp

0

)
then

20: tk ← 1 and tk+1 ←
1+
√

1+4t2k
2

21: p
(k+1)
0 ← p

(k)
0 + tk−1

tk+1

(
p

(k)
0 − p

(k−1)
0

)
22: else

23: εF =

∣∣∣C(p
(k+1)
0 )−C(ptmp

0 )
∣∣∣

C
(
p
(k)
0

)
24: end if

25: k ← k + 1

26: end while

27: p̂0 ← p
(k+1)
0
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