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Abstract—Photoacoustic computed tomography (PACT) 

based on a full-ring ultrasonic transducer array is widely 
used for small animal wholebody and human organ 
imaging, thanks to its high in-plane resolution and full-view 
fidelity. However, spatial aliasing in full-ring geometry 
PACT has not been studied in detail. If the spatial Nyquist 
criterion is not met, aliasing in spatial sampling causes 
artifacts in reconstructed images, even when the temporal 
Nyquist criterion has been satisfied. In this work, we 
clarified the source of spatial aliasing through 
spatiotemporal analysis. We demonstrated that the 
combination of spatial interpolation and temporal filtering 
can effectively mitigate artifacts caused by aliasing in either 
image reconstruction or spatial sampling, and we validated 
this method by both numerical simulations and in vivo 
experiments. 

 
Index Terms— Photoacoustic computed tomography, 

spatiotemporal antialiasing, spatial interpolation, temporal 
filtering. 

 

I. INTRODUCTION 

HOTOACOUSTIC computed tomography (PACT) is an 
imaging modality that provides tomographic images of 

biological tissues. By converting highly scattered photons into 
ultrasonic waves, which are much less scattered than light in 
biological tissues, PACT forms high-resolution images of the 
tissues’ optical properties at depths [1]–[8]. In PACT, the 
photon-induced acoustic waves, called photoacoustic waves, 
are detected by an ultrasonic transducer array. The detected 
acoustic signals are used to reconstruct the target tissue’s 
optical absorption via inverse algorithms. Commonly used 
reconstruction algorithms include forward-model-based 
iterative methods [9]–[18], time reversal methods [19]–[23], 
and the universal back-projection (UBP) method [1], [4], [6], 
[24]–[27]. 

In PACT, the ultrasonic transducer array should provide 
dense spatial sampling (SS) around the object to satisfy the 
Nyquist sampling theorem [4], [28]. The SS interval on the 
tissue surface should be less than half of the lowest detectable 
acoustic wavelength. Otherwise, artifacts may appear in image 
reconstruction (IR), a problem we call spatial aliasing. In 
practice, due to the high cost of a transducer array with a large 
number of elements or limited scanning time, spatially sparse 
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sampling is common. 
In this work, we analyze the spatial aliasing in PACT using 

the UBP reconstruction [24]. We use a circular geometry (a full-
ring ultrasonic transducer array or its scanning equivalent) with 
point elements as an example for analysis. In addition, we 
discuss only acoustically homogeneous media. Starting from 
the reconstruction at a source point, we identify two types of 
spatial aliasing: aliasing in SS and aliasing in IR. Then we 
demonstrate that aliasing in IR can be eliminated through 
spatial interpolation, while aliasing in SS can be mitigated 
through temporal filtering. Finally, we validate the proposed 
spatiotemporal antialiasing methods via both numerical 
simulations and in vivo experiments. 

II. BACKGROUND 

In a homogeneous medium, a photoacoustic wave can be 
expressed as [29], [30] 
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Here, �(�, �) is the pressure at location � and time t, � is the 
speed of sound (SOS), � is the volumetric space occupied by 
the tissue, and ��(��) is the initial pressure at ��. For 
convenience in the following discussion, we rewrite Equation 
(1) as 
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Discretizing Equation (2) in space, we obtain 
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� = 1,2, … , �. (3) 

Here, we assume � source points distributed at ��
� , � =

1,2, … , �, and � point detection elements distributed at ��, � =
1,2, … , �. The term �� is the volume of the �-th source point. 

The response of an ultrasonic transducer can be described by 
the equation 

�̂(��, �) = �(��, �) ∗� ℎ�(�), � = 1,2, … , �. (4) 
Here, �̂(��, �) is the pressure impinging on the �-th point 
detection element at time �, and ℎ�(�) is the ultrasonic 
transducer’s electric impulse response (EIR). Substituting 
Equation (3) into Equation (4), we obtain 

P 
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The term ℎ�
� �� −

���
� ����

�
� is a function of both the time and 

space, where the first prime denotes temporal derivative. The 
following discussion is based on the spatiotemporal analysis of 
this term. When acoustic signals are digitized by a data 
acquisition system (DAQ), an antialiasing filter for a 
sufficiently high temporal sampling rate avoid temporal 
aliasing. Thus, for simplicity, the time variable is assumed to be 
continuous here. The spatial variables are discretized, allowing 
for further discussion of SS. 

For the three common detection geometries—planar, 
spherical, and cylindrical surfaces, an image mapping the initial 
pressure ��(���) can be reconstructed through the UBP formula 
[24]: 
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where the back-projection term �(�, �) = 2�(�, �) − 2�
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‖�����‖
 is the solid angle for detection element 

at � with respect to reconstruction location ���, d� is the 
detection element surface area, and ��(�) is the ingoing normal 
vector. The total solid angle is denoted as Ω�. In practice, the 
true pressure �(�, �) is approximated by the detected pressure 
�̂(��, �), leading to a discretized form of Equation (6): 
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Here, �̂�(���) is the reconstructed initial pressure and ��(��, �) =

2�̂(��, �) − 2�
���(��,�)

��
 is the back-projection term computed 

from the detected pressure. The weights ��, � = 1,2, … , � 

come from 
��

��
 in Equation (6). 

III. SPATIAL ALIASING IN SS AND IR 

Given a detection geometry, the SS frequency is determined 
by the reciprocals of the distances between the adjacent 
sampling positions. Here, we use a full-ring ultrasonic 
transducer array with point detection elements as an example 
for spatiotemporal analysis. We assume that the full-ring 
transducer array with a radius of � has � evenly distributed 
detection elements, shown as the red circle in Fig. 1(a). The 
center � of the circle is the origin of a coordinate system for IR. 
The upper cutoff frequency of the ultrasonic transducer is �� 
(the estimation of �� is discussed in Appendix B), and the 

corresponding lower cutoff wavelength �� =
�

��
. The acquired 

signals were first filtered by a third-order lowpass Butterworth 
filter and a sinc filter (both with a cutoff frequency of ��). Thus, 
the frequency components with frequencies higher than �� were 
removed. We define ��, called the detection zone here, as 

�� = {��|‖��‖ ≤ �}. (8) 
We first analyze aliasing in SS. When the detection element 

location � varies discretely, the step size along the perimeter is 
���

�
. The tangential direction is marked by a dotted line (Fig. 

1(a)), which is perpendicular to vector �. We consider a source 
point at ��, and extend the line segment � − �� as a dashed line 
(Fig. 1(a)). Vectors −�� and � − �� form an angle �, while 
vector � − �� forms an angle �′ with the tangential dotted line. 
Then the angle formed by vectors −� and �� − � can be 

expressed as �� −
�

�
. The local sampling step size of ‖� − ��‖ is 

approximately 
2��

�
cos �′ , (9) 

whose absolute value means the length of the local sampling 
step size, while the sign means the sampling direction. This 
approximation is proven to be accurate enough in Appendix C. 
From Equation (5), at a given time �, and with the lower cutoff 
wavelength ��, we can express the Nyquist criterion as 
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<
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2
. (10) 

To transform this inequality to a constraint for the source point 
location ��, we use the Law of Sines: 

�
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Here r� = ‖��‖. Using Equation (11), Expression (9) can be 
transformed to 

2�� cos �′

�
=

−2��� sin �

�
. (12) 

Combining Inequality (10) and Equation (12), we obtain 

�� <
���

4�|sin �|
, (13) 

which must be satisfied for any � ∈ [0,2π). 

 
Figure 1. Analysis of the spatial aliasing for a circular geometry. (a) A full-ring 
transducer array of radius � (red circle), where a detection element location � 
and a source point location �� are marked. The locations � and �� are also seen 
as vectors from the origin to these locations. Vectors −�� and � − �� form an 
angle �, while the extension of line segment � − �� forms an angle �′ with the 
tangential dotted line that is perpendicular to �. The angle formed by vectors 

−� and �� − � can be expressed as �� −
�

�
. This graph is used to analyze the 

aliasing in SS. (b) A full-ring transducer array with a detection element location 
�, two reconstruction locations ��� and ��

��, and a source point location �� 
marked. Extensions of the line segments � − ���, � − ��

��, and � − �� form 
angles �′′, ��

��, and �′, respectively, with the tangential dotted line that is 

perpendicular to �. Vectors ��� and �� form an angle � = arccos �
���

�
� +

arccos �
��

�
�, where ��� = ‖���‖ and �� = ‖��‖. Points ��� and ��

�� are on the same 

circle centered at �. This graph is used to analyze aliasing in IR. (c) Regions in 
the field of view representing different types of aliasing. In �� (green circle), 
which contains all source points and reconstruction locations, UBP 
reconstruction yields no aliasing. In �� (blue circle), aliasing does not exist in 
SS but may exist in UBP reconstruction. In �� (red circle), aliasing may exist 
in SS. 

When � =
�

�
 or

��

�
, Equation (13) leads to the smallest upper 

limit of ��: 
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�� <
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and the length of the local step size maximizes to 
����

�
. 

Obviously, if �� satisfies Equation (14), the length of the local 
step size of ‖� − ��‖ given by Equation (12) also satisfies the 
Nyquist criterion: 
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. (15) 

We define the region ��, called the one-way Nyquist zone here, 
as 

�� = ����‖��‖ <
���

4�
� . (16) 

Equivalently, we can consider the boundary of �� as a virtual 
detection surface, where the sampling spacing is scaled down 

from the actual detection spacing by 
��

�
 with �� being the radius 

of ��. For any source point inside ��, there is no spatial aliasing 
during SS because the sampling spacing is less than half of the 
lower cutoff wavelength, which agrees with the result in Xu et 
al. [28]. 

Next, we analyze the spatial aliasing in IR. Substituting 
Equation (5) into Equation (7), we obtain  
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Here, we use the differential operator 
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In Equation (17), we need to analyze only the expression 
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If ℎ�
� (�) has an upper cutoff frequency �� (the estimation of 

�� is discussed in Appendix B), ℎ�
��(�) will have the same upper 

cutoff frequency (Appendix B). Given a reconstruction location 
��� and a source point location �� (Fig. 1(b)), we need to analyze 
the sampling step size of ‖��� − �‖ − ‖�� − �‖ while the 
detection element location � varies. In fact, the lengths of the 
step sizes of both ‖��� − �‖ and ‖�� − �‖ reach maxima when 
��� − � and �� − � are perpendicular to ��� and ��, respectively. 
If the angle � between vectors ��� and �� satisfies � =

arccos �
���

�
� + arccos �

��
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�, where ��� = ‖���‖ and �� = ‖��‖, 

then the lengths of the step sizes of ‖��� − �‖ and ‖�� − �‖ 

achieve maxima of 
����� 

�
 and 

����

�
, respectively, with � at the 

same location, as shown in Fig. 1(b). In addition, as � passes 
this location clockwise, ‖��� − �‖ increases while ‖�� − �‖ 

decreases. Thus, the length of the step size of ‖��� − �‖ −
‖�� − �‖ achieves its maximum of 
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The Nyquist criterion requires that 
2�(��� + ��)

�
<
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2
, (20) 

which is equivalent to 

��� + �� <
���

4�
. (21) 

One may interpret this condition as follows. The physical 
propagation of the photoacoustic wave in the object to the 
detectors is succeeded by a time-reversal propagation for the 
IR. The combined region encompasses a disc with a radius of 
��� + ��. On the perimeter of this disc, the Nyquist sampling 
criterion requires that the sampling spacing be less than half of 
the lower cutoff wavelength, i.e., Equation (20). 

We denote ��, referred to as the two-way Nyquist zone here, 
as 

�� = ��� �‖��‖ <
���

8�
� . (22) 

Again, we can consider the boundary of �� as a virtual detection 
surface, where the sampling spacing is scaled down from the 

actual detection spacing by 
��

�
 with �� being the radius of ��. If 

the source points are inside �� and we reconstruct at points 

within ��, then �� <
���

��
 and ��� <

���

��
, respectively, and 

Inequality (21) is satisfied. Thus, there is no spatial aliasing 
during reconstruction, and we call �� an aliasing-free region. It 
needs to be pointed out that, due to the finite duration of the 

transducer’s temporal response, the function �1 − �� +

���
� ����

�
�

�

��
� ℎ�

� (�) has nonzero value only when � is within a 

finite interval, denoted as ��. The broader the bandwidth of 

ℎ�(�), the shorter ��. When 
�������

�
−

������

�
 is out of ��, signals 

from source point �� that are detected by the element at � have 
no contribution to the reconstruction at ���. 

In the following discussion, we assume that 
�������

�
−

������

�
 

belongs to ��. Even with source points inside ��, we may still 
have aliasing when reconstruction locations are outside �� but 
inside ��. To demonstrate this, we assume that both ��� and �� 
are on the boundary of ��, and that the length of the step size of 
‖��� − �‖ − ‖�� − �‖ achieves the maximum value of 
������� ������� ���

�
=

��

�
. Here, �′′ and �′ denote the angles 

formed by the line segments � − ��� and � − ��, respectively, 
with the tangential dotted line that is perpendicular to �. We 
move the reconstruction location ��� to a new position ��

�� 
outside �� but inside ��, as shown in Fig. 1(b). We keep the 

distance ‖��
�� − �‖ = ‖��� − �‖ constant. Thus, 
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�
−
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 still belongs to ��. As ��� moves to ��

��, 

the angle ��� decreases to ��
��. Both ��� and ��
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�
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�, 

then we have cos ��
�� > cos ���. Thus, for the local step size of 

‖��
�� − �‖ − ‖�� − �‖, we have the estimation 
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, which means that 
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spatial aliasing appears in reconstruction. Switching the source 
and reconstruction locations, we can repeat the analysis and 
draw a similar conclusion: with source points inside �� but 
outside ��, we may have aliasing when reconstruction locations 
are inside ��. 

We visualize the relative sizes of the three regions ��, ��, and 
�� in Fig. 1(c). Spatial aliasing in SS does not appear for objects 
inside ��, but appears for objects outside ��. Spatial aliasing in 
IR does not appear for objects and reconstruction locations 
inside ��, but appears for other combinations of objects and 
reconstruction locations. A detailed classification is shown in 
Fig. 2(a). 

 
Figure 2. Different combinations of source locations and reconstruction 
locations subject to spatial aliasing in SS and IR. Three regions ��, ��, and �� 
are defined in Equations (8), (16), and (22), respectively. The first line radiating 
from the origin � represents the range of source locations for SS, while the 
second line radiating from the tip of the first line represents the range of 
reconstruction locations for IR. A solid line means no aliasing, while a dotted 
line means aliasing. (a) Spatial aliasing in UBP. The innermost two-way 
Nyquist zone �� is an aliasing-free region. (b) Spatial aliasing in UBP with 
spatial interpolation. Spatial interpolation removes spatial aliasing in three 
cases of IR, making the one-way Nyquist zone �� an aliasing-free region. The 
dotted lines representing the three cases in (a) are changed to blue-solid lines in 
(b). (c) Spatial aliasing in UBP with temporal filtering and spatial interpolation. 
Temporal filtering extends the one-way Nyquist zone �� in (b) to ��

�  in (c), and 
the original �� is marked as a blue-dashed circle for reference. Spatial 
interpolation further makes ��

�  an aliasing-free region. 

IV. SPATIAL ANTIALIASING IN SS AND IR 

Spatial aliasing solely in IR but not in SS can be removed by 
spatial interpolation. In fact, without spatial aliasing in SS, 
spatially continuous signals can be accurately recovered from 
spatially discrete signals through Whittaker–Shannon 
interpolation. Then, in theory, no aliasing would occur in 
reconstructing the image using the spatially continuous signals. 
In practice, the number of detection elements is numerically 
increased. To clarify the process, at any given time �, we define  

��(�) = �̂(�, �), (23) 
where � = (�cos�, �sin�), � ∈ [0,2�). The function ��(�) is 

sampled at �� =
���

�
, � = 0,1,2, … , � − 1. For objects inside 

the region ��, SS has no aliasing. Thus, the function ��(�) can 
be well recovered from ��(��), � = 0,1,2, … , � − 1 through 
spatial Whittaker–Shannon interpolation. To extend the region 
��, we can numerically double the number of detection 
elements �� = 2� based on the interpolation. Substituting �� 
for � in Equation (22), we obtain a larger region: 

��
� = ����‖��‖ <

����

8�
� = ����‖��‖ <

���

4�
� = ��. (24) 

From the above discussion about Equation (22), we know 
that with source and reconstruction locations inside ��

� , IR has 
no aliasing. From �� = ��

� , we can see that spatial interpolation 
successfully removes spatial aliasing in IR. Fig. 2(a) is now 
replaced by Fig. 2(b). For source points outside the region ��, 
SS has aliasing, and spatial interpolation cannot recover the lost 

information, which is mitigated by the next method. 
Spatial aliasing in SS can be eliminated by temporal lowpass 

filtering. We consider a region larger than ��: 

��
� = {���|‖���‖ < ��} with �� >

���

4�
. (25) 

We have already shown that source points in this region can 
produce spatial aliasing during SS. To avoid this concern, 
before spatial interpolation and reconstruction, we process the 
signals using a lowpass filter with upper cutoff frequency ��

� =
��

����. Replacing �� in Equation (16) with ��
� =

�

��
�, we extend the 

region �� to 

��
� = �����‖���‖ <

���
�

4�
� = {���|‖���‖ < ��}. (26) 

Based on the above discussion about Equation (16), for source 
points inside ��

� , using spatial interpolation, we can reconstruct 
any points inside ��

�  without aliasing artifacts. Thus, we extend 
the one-way Nyquist zone through temporal lowpass filtering at 
the expense of spatial resolution, and replace Fig. 2(b) with Fig. 
2(c). 

An ideal antialiasing method should extend the region ��
�  in 

Fig. 2(c) to the whole region ��. However, lowpass filtering 
removes the high-frequency signals, and blurs the reconstructed 
images. Directly extending ��

�  to �� would greatly compromise 
the image resolution. As a balance between spatial antialiasing 
and high resolution, to reconstruct the image at �� ∈ ��, we 
design the lowpass filter based on its distance to the center �� =

‖��‖. If �� <
���

��
, we apply spatial interpolation, then perform 

reconstruction. If �� ≥
���

��
, we first filter the signals with upper 

cutoff frequency ��
� =

��

����, then perform spatial interpolation 

and reconstruction. We call this method radius-dependent 
temporal filtering. 

V. NUMERICAL SIMULATION 

To visualize the artifacts caused by spatial aliasing, we first 
simulated a 3D case with a hemispherical detection geometry, 
where the antialiasing methods were not applied. The k-wave 
toolbox [12] was used for the forward problem. 

The simulation parameters were set as follows: the frequency 
range of the ultrasonic transducer is from 0.1 MHz to 4.5 MHz 
(2.3-MHz central frequency, 191% bandwidth, �� = 4.5 MHz), 
the SOS � = 1.5 mm ⋅ μs��, the number of detection elements 
� = 651 (evenly distributed on the hemisphere based on the 
method in [31]), the radius of the hemisphere � = 30 mm, and 
the simulation grid size is 0.1 × 0.1 × 0.1 mm�). The elements 
are shown as red dots in Fig. 3(a). A simple numerical phantom 
with nonzero initial pressure from two layers with distances of 
0 and 6.8 mm from the xy plane was analyzed first. The 
phantom is shown as blue dots in Fig. 3(a). The ground-truth 
images of the two layers are shown in Fig. 3(b1) and (c1), 
respectively, and the reconstructions are shown in Fig. 3(b2) 
and (c2), respectively. As can be seen, artifacts appear in both 
layers and seem stronger in the layer further from the xy plane. 

Using the same array, we further simulated a complex 
phantom with nonzero initial pressure from four layers with 
distances of 0, 3.4, 6.8, and 10.2 mm from the xy plane, shown 
as blue dots in Fig. 3(d). The ground-truth images of the four 
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layers are shown in Fig. 3(e1), (f1), (g1), and (h1), respectively, 
and the reconstructions are shown in Fig. 3(e2), (f2), (g2), and 
(h2), respectively. Strong aliasing artifacts appear in all 
reconstructed images, and the artifacts tend to be more obvious 
in layers further from the origin. Regions of interest (ROIs) A–
G (1.5 × 1.5 mm�) with increasing distances from the origin 
were picked from the four layers at locations with zero initial 
pressure. The standard deviations (STDs) of the pixel values 
inside these regions were calculated to quantify the aliasing 
artifacts. As can be seen in Fig. 3(i), the artifacts become 
stronger as the ROI moves away from the origin. 

 
Figure 3. Aliasing artifacts in 3D reconstruction in a numerical simulation. (a) 
An array with 651 detection elements evenly distributed on a hemisphere and a 
simple numerical phantom covered by the array. (b1)–(b2), (c1)–(c2) Ground-
truth slices (Column 1) of a simple phantom at � = 0 (Row b) and 6.8 mm (Row 
c), respectively, and their corresponding reconstructed images (Column 2) . (d) 
The same array with a complex numerical phantom. (e1)–(e2), (f1)–(f2), (g1)–
(g2), and (h1)–(h2) Ground-truth slices (Column 1) of the phantom at � = 0, 
3.4, 6.8, and 10.2 mm (Rows e–h), respectively, and their corresponding 
reconstructed images (Column 2). (i) STD values of the pixel values in the ROIs 
outlined in the green boxes. 

The 3D simulation provides a direct observation of the 
aliasing artifacts. Furthermore, we give a simplified estimation 
of the one-way Nyquist zone of the hemisphere geometry. We 
consider the planes crossing the center of the hemisphere. On 
each plane, we calculate the one-way Nyquist zone for the 2D 
case. All the detection elements for this plane lie on its 
intersection with the hemisphere, which is a semicircle with 
length �� (subset of a full circle with length 2��). Based on 
the above analysis, we only need to estimate the number of 
detection elements for this plane. In fact, given the area of the 
hemisphere 2��� and the number of elements �, we know that 
the distance between two neighboring elements is 

approximately �
����

�
. Thus, the number of elements (in a full 

circle) for this plane is approximately 

�� =
2��

�2���

�

= √2��.
(27) 

Using Equation (15), we obtain the one-way Nyquist zone on 
this plane: 

��
� = ����‖��‖ ≤

����

4�
� = ����‖��‖ ≤

�
4��

�2�
�

� . (28) 

For a 3D simulation, we vary the plane’s normal vector: All the 

2D regions ��
�  form a half ball with radius 

�

���
�

��

�
≈ 1.70 mm, 

which is much smaller than the radius � = 30 mm. This large 
difference explains the prevalence of the artifacts in the 
reconstructed 3D image. 

To simplify the problem and clarify the key points, in the 
following simulations, we focus on the 2D case with a full-ring 
transducer array of radius � = 30 mm. The frequency range of 
the transducer is from 0.1 MHz to 4.5 MHz. We set the number 
of detection elements � = 512 and the SOS � = 1.5 mm ⋅
μs��. The radius of the one-way Nyquist zone �� is thus � =

��

����
≈ 13.6 mm. 

 
Figure 4. Spatial interpolation and temporal filtering’s effects on IR in 
numerical simulations for a simple phantom. The full-ring transducer array and 
the boundaries of �� and �� are marked by red, blue, and green circles, 
respectively. (a) Ground truth of a simple initial pressure �� distribution. (b)–
(d) Reconstructions of the object in (a) using (b) UBP, (c) UBP with SI, and (d) 
UBP with TF and SI, respectively. SI, spatial interpolation; TF, temporal 
filtering. (e) Comparison of the STDs in the ROIs A–E marked with the green 
boxes. (f)–(g) Comparisons of the profiles of lines (f) P and (g) Q, respectively, 
based on the three methods. 

We used 0.1 × 0.1 mm� grid size, and we first simulated a 
simple initial pressure distribution shown in Fig. 4(a), with 
closeups of the blue-dashed, red-dashed, and yellow-dashed 
boxed regions. The full-ring transducer array and the 
boundaries of �� and �� are marked by red, blue, and green 
circles, respectively. The reconstruction of the object in Fig. 
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4(a) using UBP is shown in Fig. 4(b). Despite the clean ground-
truth background boxed in Fig. 4(a), obvious aliasing-induced 
artifacts appear in the reconstructed image outside �� (red box) 
but not inside (blue box). It should be noticed that the yellow-
boxed region in Fig. 4(b) is outside ��, but it does not show 
strong artifacts. In fact, based on the above discussion, spatial 
aliasing only appears for certain combinations of source and 
reconstruction locations. Due to the specific distribution of the 
source, the artifacts turn out to be much stronger in the red-
boxed region than that in the yellow-boxed region. We used 
spatial interpolation to remove aliasing solely in IR. Given a 
time �, signals from all the detection elements formed a vector 
with length �. The fast Fourier transformation (FFT) was then 
applied to the vector, and zeros were padded behind the highest 
frequency components to double the vector length to 2�. 
Finally, the inverse FFT was applied to the new vector to 
interpolate the data. This process is the frequency domain 
implementation of Whittaker–Shannon interpolation. Spatial 
interpolation numerically doubled the number of detection 
elements. The reconstruction of the object in Fig. 4(a) using 
UBP with spatial interpolation is shown in Fig. 4(c). To remove 
the spatial aliasing during SS, we applied a radius-dependent 
lowpass filter to the temporal signals before spatial 
interpolation. We used a third-order lowpass Butterworth filter 
and a sinc filter (with the same cutoff frequency) for radius-
dependent filtering. The reconstruction of the object in Fig. 4(a) 
using UBP with temporal filtering and spatial interpolation is 
shown in Fig. 4(d). 

To quantify the amplitude of artifacts, we chose ROIs A–E 
(1.2 × 1.2 mm�) at locations with zero initial pressure. The 
STDs of the pixel values inside these regions were calculated. 
As can be seen in the red-boxed regions and Fig. 4(e), spatial 
interpolation mitigates the aliasing artifacts significantly, while 
adding temporal filtering before spatial interpolation further 
diminishes the artifacts. This observation agrees with the above 
demonstration about both methods’ effects on extending the 
aliasing-free region. To quantify the impact of the antialiasing 
methods on image resolution, we picked two lines at P and Q, 
respectively, in each reconstructed image, and compared their 
profiles in Fig. 4(f) and (g), respectively. For signals from 
source points inside ��, there is no spatial aliasing in SS, and 
spatial interpolation is accurate at the interpolation points. 
Moreover, radius-dependent temporal filtering does not affect 
the signals when reconstructing inside ��. Thus, the antialiasing 
methods have negligible impact on the profile of line P (inside 
��), as shown in Fig. 4(f). For signals from source points outside 
��, the spatial interpolation is inaccurate due to spatial aliasing. 
Thus, directly applying spatial interpolation affects the profile 
of line Q (outside ��). Radius-dependent temporal filtering 
smooths the signals before reconstructing outside ��, thus it 
further smooths the profile of line Q, as shown in Fig. 4(f). 

Next, we simulated two complex cases. For the first case, the 
object is completely within ��, as shown in Fig. 5(a1). The 
reconstructions of the object in Fig. 5(a1) using UBP, UBP with 
spatial interpolation, and UBP with temporal filtering and 
spatial interpolation are shown in Fig. 5(a2)–(a4), respectively. 
ROIs A–C (1.2 × 1.2 mm�) were chosen at locations with zero 
initial pressure. The STDs were calculated and compared, as 
shown in Fig. 5(b1). Profiles of lines P and Q are shown in Fig. 

5(b2) and (b3), respectively. For the second case, the object is 
beyond ��, and covers most of the area inside the full-ring 
transducer array, as shown in Fig. 5(c1). The reconstructions of 
the object in Fig. 5(c1) using the three methods are shown in 
Fig. 5(c2)–(c4), respectively. The STDs of ROIs A–C are 
compared in Fig. 5(d1), while the profiles of lines P and Q are 
shown in Fig. 5(d2) and (d3), respectively. Although spatial 
interpolation mitigates the aliasing artifacts in both Fig. 5(a2) 
and (c2), visible artifacts remain in the red-boxed region in Fig. 
5(c3) but not in Fig. 5(a3). It can also be seen in Fig. 5(b1) and 
(d1) that spatial interpolation has more obvious antialiasing 
effects on Fig. 5(a2) than on Fig. 5(c2), while temporal 
filtering’s effect on Fig. 5(c2) is more obvious than on Fig. 
5(a2). In fact, the aliasing artifacts in Fig. 5(a2) are solely from 
the IR, while those in Fig. 5(c2) are from both the SS and the 
IR. Thus, spatial interpolation works well in antialiasing for 
Fig. 5(a2), for which temporal filtering’s smoothing effect 
slightly helps; but not as well for Fig. 5(c2) due to the spatial 
aliasing in SS, for which temporal filtering is necessary. In 
general, the aliasing artifacts are mitigated by spatial 
interpolation and further diminished by temporal filtering, as 
shown in both Fig. 5(b1) and (d1). The antialiasing methods 
maintain the image resolution well inside ��, as shown in Fig. 
5(b2), (b3), and (d2). Due to spatial aliasing in SS for objects 
outside ��, the profile of line Q is affected by spatial 
interpolation. Adding temporal filtering further smooths the 
profile. The full width at half maximum (FWHM) of the main 
lobe in line Q’s profile was increased by temporal filtering 
while the amplitude was reduced, as shown in Fig. 5(d3). All 
these observations regarding the complex phantoms agree with 
the discussions about the simple phantom in Fig. 4. 
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Figure 5. Spatial interpolation and temporal filtering’s effects on IR in 
numerical simulations for two complex phantoms. (a1) Ground truth of a 
complex initial pressure �� distribution confined to ��. (a2)–(a4) 
Reconstructions of the object in (a1) using (a2) UBP, (a3) UBP with SI, and 
(a4) UBP with TF and SI, respectively. SI, spatial interpolation; TF, temporal 
filtering. The artifacts in the red-boxed region are caused by spatial aliasing in 
IR, and they are mainly mitigated by SI. (b1) Comparison of the STDs in the 
ROIs A–C. (b2) and (b3) Comparisons of the profiles of lines P and Q, 
respectively, for the three methods. (c1) Ground truth of a complex initial 
pressure �� distribution beyond ��. (c2)–(c4) Reconstructions of the object in 
(c1) using (c2) UBP, (c3) UBP with SI, and (c4) UBP with TF and SI, 
respectively. The artifacts in the red-boxed region are caused by spatial aliasing 
in SS and IR, and the artifacts are mitigated by TF and SI. (d1) Comparison of 
the STDs in the ROIs A–C. (d2) and (d3) Comparisons of the profiles of lines 
P and Q, respectively, for the three methods. The FWHM of the main lobe at Q 
was increased from 0.35 mm to 0.48 mm by temporal filtering, while the 
amplitude was changed from 0.90 to 0.56, respectively. 

VI. IN VIVO EXPERIMENT 

Finally, we applied the spatial interpolation and temporal 
filtering methods to human breast imaging. The imaging 
system, as previously reported by Lin et al. [6], employed a 
512-element full-ring ultrasonic transducer array (Imasonic, 
Inc., 110-mm radius, 2.25-MHz central frequency, 95% one-
way bandwidth). Based on point source measurements 
(Appendix B), the cutoff frequency is estimated to be �� ≈
3.80 MHz. The acquired signals were filtered by a third-order 
lowpass Butterworth filter and a sinc filter (both with cutoff 
frequency 3.80 MHz). Thus, the one-way Nyquist zone �� has 

a radius � =
��

����
≈ 16.0 mm, while the two-way Nyquist zone 

�� has a radius of 8.0 mm. Here we use the speed of sound � =
1.49 mm ⋅ μs�� .  
  

Figure 6. Spatial interpolation and temporal filtering’s effects on IR in an in 
vivo human breast image. (a) Reconstructed image using UBP without either 
spatial interpolation or temporal filtering, and a closeup subset in the yellow-
boxed region. Boundaries of �� and �� are shown as white-dashed and white-
solid circles, respectively. (b) and (c) Reconstructions of the same region as (a) 
using (b) UBP with SI, and (c) UBP with TF and SI, respectively. SI, spatial 
interpolation; TF, temporal filtering. (d) and (e) Comparisons of the profiles of 
lines P and Q, respectively, for the three methods. The FWHM of the main lobe 
at Q was increased from 0.44 mm to 0.55 mm by temporal filtering, while the 
amplitude was changed from 0.64 to 0.38, respectively. 

Using UBP, we reconstructed a cross-sectional image of a 
breast, shown in Fig. 6(a). The aliasing artifacts are obvious in 
the peripheral regions, as shown in Fig. 6(a)’s closeup subset in 
a yellow-boxed region. After spatial interpolation of the raw 
data, the reconstructed image is shown in Fig. 6(b). Applying 

temporal filtering and spatial interpolation, we obtained Fig. 
6(c). As can be seen from these subsets, the image quality is 
improved by spatial interpolation, and the aliasing artifacts are 
further mitigated by temporal filtering. For comparison, the 
profiles of lines P and Q for the three images are shown in Fig. 
6(d) and (e), respectively. As shown by the numerical 
simulation, image resolution outside �� is compromised by both 
spatial interpolation and temporal filtering. Temporal filtering 
smooths the profiles, as shown in Fig. 6(d) and (e). 
Quantitatively, as shown in Fig. 6(e), temporal filtering 
increases the FWHM of the main lobe of line Q’s profile and 
reduces the amplitude. 

VII. CONCLUSIONS AND DISCUSSION 

In this work, we clarified the source of spatial aliasing in 
PACT through spatiotemporal analysis. Then we classified the 
aliasing into two categories: aliasing in SS, and aliasing in IR. 
Using a circular geometry as an example, we demonstrated two 
antialiasing methods to remove aliasing artifacts. The methods 
were validated by numerical and in vivo studies. Spatial 
interpolation maintains the resolution in the one-way Nyquist 
zone �� while mitigating the artifacts caused by aliasing in IR. 
It extends the aliasing-free zone from �� to ��. For objects 
outside ��, spatial interpolation is inaccurate due to spatial 
aliasing in SS, thus compromises the resolution. Adding radius-
dependent temporal filtering does not affect the resolution 
inside ��. For objects outside ��, temporal filtering suppresses 
high-frequency signals to satisfy the temporal Nyquist sampling 
requirement. Although reducing the spatial resolution in the 
affected regions, temporal filtering mitigates aliasing in SS and 
makes the spatial interpolation accurate, thus further extends 
the aliasing-free zone. 

The spatiotemporal analysis used here is not limited to 
circular geometry. It can also be applied to the linear array 
geometry, as shown in Appendix D. Based on the basic 1D 
circular and linear geometries, one can analyze 2D geometries, 
such as, the planar geometry and the spherical geometry, 
through decomposition. Moreover, the conclusions drawn are 
also applicable to other IR algorithms. For example, spatial 
interpolation has been used in time reversal methods to generate 
a dense enough grid for numerical computation [20]–[23]. Now 
we prove that it can mitigate the aliasing artifacts caused in 
reconstruction. Furthermore, location-dependent temporal 
filtering can be incorporated into a wave propagation model and 
be used in time reversal methods and iterative methods to 
mitigate aliasing in SS. 

APPENDIX A 

SPECTRUM ANALYSIS OF 
��������

�
ℎ�

�� �
��������

�
−

���
� ����

�
� IN 

EQUATION (17) 

To analyze the spatial aliasing in IR, we first analyze the 

expression 
��������

�
ℎ�

�� �
��������

�
−

���
� ����

�
�, which is a 

multiplication of a fast-change variable ℎ�
�� �

��������

�
−

���
� ����

�
� 

and a slow-change variable 
��������

�
. Considering that the 
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multiplication is equivalent to a convolution in the frequency 

domain, the multiplication of 
��������

�
 causes spectrum change. 

In this appendix, we analyze this spectrum change and prove 
that it is negligible. 

To simplify the problem, we only consider the case with 
��

� = (�′, 0) and ��� =

��� cos �2 arccos
��

�
� , �� sin �2 arccos

��

�
��. In this case, 

��������

�
−

���
� ����

�
 can achieve the maximum sampling step size 

����

�
 as � varies (Equation (19)), where spatial aliasing is the 

most severe. Given an element location �(�) =

�(cos � , sin �), we define ��(�) =
������(�)�

�
 and ��(�) =

ℎ�
�� �

������(�)�

�
−

���
� ��(�)�

�
�. Then, the continuous form of 

��������

�
ℎ�

�� �
��������

�
−

���
� ����

�
� can be expressed as ��(�)��(�). 

Applying the Fourier transformation to ��(�)��(�) and ��(�), 
we obtain �(����)(�) and �(��)(�), respectively. Here � 
denotes the Fourier transformation operator. The difference 
between the two normalized spectra is expressed as 

max
�

�
|�(����)(�)|

���
�

|�(����)(�)|
−

|�(��)(�)|

���
�

|�(��)(�)|
�, which is a function of �� ∈

[0, �). We calculated the difference between the two 
normalized spectra for a full-ring array geometry with a radius 
� = 110 mm, and a point source response ℎ�

�  measured 
through experiments. We used a speed of sound � = 1.49 mm ⋅
μs�� in the computation. As shown in Fig. 7, for �� ∈
[0,0.98�], which is large enough for this research, we have 

max
�

�
|�(����)(�)|

���
�

|�(����)(�)|
−

|�(��)(�)|

���
�

|�(��)(�)|
� < 4.5 × 10��. When �� 

approaches �, singularity occurs. For a system with a 

frequency-dependent SNR smaller than 
�

�.�×���� ≈ 222, which 

is almost always true for our experimental cases, the difference 
between the two normalized spectra is negligible. Therefore, to 
simplify the problem, we analyze the spatial aliasing in 

ℎ�
�� �

��������

�
−

���
� ����

�
� to respresent the spatial aliasing in 

��������

�
ℎ�

�� �
��������

�
−

���
� ����

�
�. 

 
Figure 7. Difference between the normalized spectra 

|�(����)(�)|

���
�

|�(����)(�)|
 and 

|�(��)(�)|

���
�

|�(��)(�)|
 for �� ∈ [0,0.98�]. We have max

�
�

|�(����)(�)|

���
�

|�(����)(�)|
−

|�(��)(�)|

���
�

|�(��)(�)|
� ≤

4.5 × 10�� for any �� ∈ [0,0.98�]. 

APPENDIX B 

ESTIMATION OF THE UPPER CUTOFF FREQUENCY 

In this appendix, we estimate �� using point source 

measurements. From these measurements, we obtain an 
estimation of the point source response. We quantify the 
response’s amplitude and noise level in the frequency domain, 
then calculate the frequency-dependent signal-to-noise ratio 
(SNR). We choose the upper cutoff frequency ��, higher than 
the central frequency, where the frequency-dependent SNR 
decreases to one for the first time. 

We used the full-ring transducer array to acquire the PA 
signals generated by a point source located at the array center 
for � repetitions (� = 100). From each acquisition, we obtained 
� measurements from � transducer elements (� = 512). 
Based on Equation (5), by ignoring a constant factor, we can 
express the point source response as ℎ�

� (�). We denote the 
measurement of ℎ�

� (�) by the �-th element in the �-th 
acquisition as ℎ�,�,�

� (�). In each acquisition, the mean response 

is denoted as  

ℎ�,�
� (�) =

1

�
� ℎ�,�,�

�

�

���

(�), � > 0, � = 1,2, … , �. (29) 

We can further estimate the point source response ℎ�
� (�) using 

ℎ�
�� (�) =

1

�
� ℎ�,�

�

�

���

(�), � > 0. (30) 

The normalized value of ℎ�
����(�) is shown in Fig. 8(a). Applying 

the Fourier transformation to ℎ�,�
� (�) and ℎ�

����(�), we obtain 

��ℎ�,�
� �(�) and ��ℎ�

�����(�), respectively. The normalized 

amplitude of ��ℎ�
�����(�) is shown in Fig. 8(b). 

 

Figure 8. Estimation of the upper cutoff frequency. (a) Normalized estimated 

point source response �
��

�����(�)

���
�

��
�����(�)

�. (b) Normalized frequency spectrum of the 

estimated point source response �
�����

������(�)�

���
�

�����
������(�)�

�. (c) Normalized frequency 

spectrum of the noise STD �
��(�)

���
�

�����
������(�)�

�. (d) Frequency-dependent SNR 

�SNR�(�) =
�����

������(�)�

��(�)
�. The upper cutoff frequency is estimated to be �� =

3.80 MHz, where the SNR equals to one. (e) Frequency-dependent SNR of the 

derivative of the point source response �SNR�(�) =
�����

�������(�)�

��(�)
�. The upper 

cutoff frequency is also estimated to be �� = 3.80 MHz. (f) Normalized 
frequency spectra of ℎ�

�  (frequency components with frequencies higher than 
3.80 MHz are removed) and ℎ�

�� 

�
�����

� �(�)�

���
�

�����
� �(�)�

 and 
�����

���(�)�

���
�

�����
���(�)�

, respectively�. 

Considering that each pixel value in a reconstructed image is 
obtained by a weighted summation of the signals from � 
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elements, we can use the noise in ℎ�,�
� (�) (rather than ℎ�,�,�

� (�)) 

to approximate the noise in the reconstructed image. At a 
frequency of �, the noise STD in ℎ�,�

� (�) can be estimated as 

��(�) ≈ �
1

� − 1
����ℎ�,�

� �(�) − ��ℎ�
�����(�)�

�

�

���

. (31) 

Thus, we can define the frequency-dependent SNR as  

SNR�(�) =
���ℎ�

�����(�)�

��(�)
. (32) 

The normalized value of ��(�) and the value of SNR�(�) are 
shown in Fig. 8(c) and (d), respectively. We choose the cutoff 
frequency �� to be 3.80 MHz (higher than the central frequency 
2.25 MHz), where SNR(�) decreases to one for the first time. 

To observe the temporal differentiation effect on the 
spectrum of ℎ�

����, we replace ℎ�
���� in Equation (31) and (32) with 

ℎ�
������, and obtain ��(�) and SNR�(�), respectively. As can be 

seen in Fig. 8(e), the upper cutoff frequency we obtain from 
SNR�(�) is the same as that from SNR�(�). In practice, before 
the UBP reconstruction, we filter the acquired signals with a 
third-order lowpass Butterworth filter and a sinc filter (both 
with a cutoff frequency of ��). Thus, the frequency components 
with frequencies higher than 3.80 MHz are removed from ℎ�

� . 
The normalized frequency spectrum of ℎ�

�  and ℎ�
�� are shown in 

Fig. 8(f). As can be seen, although the spectrum is positively 
shifted by the temporal differentiation for � < 3.80 MHz, the 
cutoff frequency 3.80 MHz doesn’t change. 

APPENDIX C 

ACCURACY OF THE SAMPLING STEP SIZE APPROXIMATION 

This research is based on an approximation of the sampling 
step size, as shown in Expression (9), especially its maximum 

value 
����

�
. In this appendix, we discuss the accuracy of this 

approximation by expressing the sampling step size as a Taylor 
expansion with the Lagrange remainder. The first-order term is 
the approximation we use. By analyzing the higher-order terms, 
we prove that the differences are negligible. 

 
Figure 9. Accuracy of the sampling step size approximation. (a) A full-ring 
transducer array with a radius � (red circle), where two adjacent detection 
element locations �� and ��, and a source point location �� are marked. These 
and the following locations are also regarded as vectors from the origin � to 
them. Vectors �� and �� form an angle �, whose bisector intersects with the ring 
at ��

�

. Vector ��

�

− �� forms an angle �′ with the tangential dotted line that is 

perpendicular to vector ��

�

. Vectors ��

�

 and �� form an angle �, while vectors 

��

�

− �� and −�� form an angle �. The angle formed by vectors −��

�

 and �� − ��

�

 

can be expressed as �� −
�

�
. This graph is used to estimate the sampling step 

size |‖�� − ��‖ − ‖�� − ��‖|. (b) and (c) Errors of using ��� = 2��′

�
 to 

approximate �(��, �) for �� = 0.95��
� ≈ 15.2 mm and �� = 6.75��

� ≈
107.8 mm, respectively. 

For a full-ring transducer array with a radius � and centered 
at the origin �, we consider a source point at �� and two adjacent 
detection element locations �� and �� (Fig. 9(a)). The bisector 
of the angle formed by vectors �� and �� intersects with the ring 
at ��

�

. Vectors �� and �� form an angle �; vectors ��

�

 and �� form 

an angle �; while vectors ��

�

− �� and −�� form an angle �. 

Vector ��

�

− �� forms an angle �′ with the tangential dotted line 

crossing point ��

�

. Thus, the angle formed by vectors −��

�

 and 

�� − ��

�

 can be expressed as �� −
�

�
. Based on the Law of 

Cosines in triangles ����� and �����, we have 

‖�� − ��‖ = ��� + ��� − 2��� cos �� +
�

2
� , (33) 

and 

‖�� − ��‖ = ��� + ��� − 2��� cos �� −
�

2
� , (34) 

respectively. To simplify the following expression, we define 
functions 

��,�(�) =
‖�� − ��‖

�
= �1 + �� − 2� cos �� +

�

2
� , (35) 

�(�, �) = �(1 + �� − 2� cos �)�
�
� sin � , (36) 

and 

�(�, �) =
1−��

1 + �� − 2� cos �
∈ �

1 − �

1 + �
,
1 + �

1 − �
� . (37) 

Here, we let � =
��

�
. Using the Law of Sines in triangle ���

�

�� 

sin �

��1 + �� − 2� cos � 
=

sin �

�
=

sin ��� −
�
2

�

��
=

− cos ��

��
, (38) 

we have 
�(�, �) = − cos �� , (39) 

and 
|�(�, �)| = |� sin �| ≤ �, � ∈ [0,1), � ∈ [0,2�). (40) 

One can prove that 

��,�(−�) =
‖�� − ��‖

�
, (41) 

��,�
� (�) =

1

2
� ��, � +

�

2
� , (42) 

and 

��,�
��� (�) = −

� ��, � +
�
2

�

8
�

1

4
+

3

4
�� ��, � +

�

2
�� . (43) 

Then, based on the Taylor expansion of ��,�(�) − ��,�(−�), we 

can express the sampling step size as 
|‖�� − ��‖ − ‖�� − ��‖| = ����,�(�) − ��,�(−�)� 

= � �2��,�
� (0)� +

��,�
��� (��) + ��,�

��� (−��)

6
��� 

= sgn(sin �) �(�, �)�� 

−
sgn(sin �) � ��, � +

��

2
�

48
�

1

4
+

3

4
�� ��, � +

��

2
�� ��� 

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2020 at 23:36:12 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.2998509, IEEE
Transactions on Medical Imaging

10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 
 

−
sgn(sin �) � ��, � −

��

2
�

48
�

1

4
+

3

4
�� ��, � −

��

2
�� ���, 

for some �� ∈ (0, �). (44) 
Here, we use the sign function 

sgn(�) = �
−1, � < 0,
0, � = 0,
1, � > 0.

(45)  

In practice, it is the maximum sampling step size that affects 
spatial aliasing. To have a finer estimation of the maximum 
sampling step size, we first estimate the upper bound of 

|‖�� − ��‖ − ‖�� − ��‖|. For � ∈ �
�

�
, � −

�

�
� ∪ �� +

�

�
, 2� −

�

�
�, 

we have sgn(sin �) � ��, � ±
��

�
� ≥ 0. Thus, the high order 

terms in Equation (44) are nonpositive, and we have 
|‖�� − ��‖ − ‖�� − ��‖| ≤ |�(�, �)|�� = |cos ��|��, 

 � ∈ [0,1), � ∈ �
�

2
, � −

�

2
� ∪ �� +

�

2
, 2� −

�

2
� , � =

2�

�
≤

�

4
. (46) 

Here we assume that � ≥ 8. For � ∈ �−
�

�
,

�

�
�, we have � +

�

�
∈

[0, �] and � −
�

�
∈ [−�, 0], which means that both ��,�(�) and 

��,�(−�) belong to �√1 + �� − 2�, �1 + �� − 2� cos ��. 

Thus, we have 
|‖�� − ��‖ − ‖�� − ��‖| 

≤ � ��1 + �� − 2� − �1 + �� − 2� cos �� 

= � ��
�,

�
�

(−�) − �
�,

�
�

(�)� ≤ �� ��,
�

2
�� �� ≤ ���. (47) 

Here, we use Inequality (46) with � =
�

�
. Similarly, for � ∈

�� −
�

�
, � +

�

�
�, we have 

|‖�� − ��‖ − ‖�� − ��‖| ≤ �� ��, � −
�

2
�� �� ≤ ���. (48) 

Combining Inequalities (46)-(48), we obtain the upper bound of 
the sampling step size 

|‖�� − ��‖ − ‖�� − ��‖| ≤ ��� =
2���

�
, 

� ≥ 8, �� ∈ [0, �), � ∈ [0,2�). (49) 
Next, we estimate the lower bound of |‖�� − ��‖ −

‖�� − ��‖| for � =
�

�
. In fact, for each �� > 0, there exist � 

locations of �� evenly distributed on the circle ‖��‖ = �� such 

that � =
�

�
. For each location, we have � = arccos �, 

sgn(sin �) = 1, and �(�, arccos �) = �. In general, we may 

have singularities in � ��, � +
��

�
�. To avoid the singularities, 

we assume � ≤ cos �, which means that � = arccos � ∈ [�,
�

�
]. 

Thus, we have cos �� +
��

�
� < cos � and cos �� −

��

�
� <

cos �� −
�

�
�, leading to 

� ��, � +
��

2
� < �(�, arccos �) = 1, (50) 

and 

� ��, � −
��

2
� < � ��, arccos � −

�

2
� 

=
1−��

1 + �� − 2�� cos
�
2

− 2�√1 − �� sin
�
2

, (51) 

respectively. One can validate that 
����,������ ��

�

�
�

��
≥ 0 is 

equivalent to �� ≤
�����

�

�

��� ���
�

�

. Thus � ��, arccos � −
�

�
�, as a 

function of �, is monotonically increasing on �0, �
�����

�

�

��� ���
�

�

�. 

Note that cos� �

�
<

�����
�

�

��� ���
�

�

 is equivalent to �cos
�

�
−

1�
�

�3 cos
�

�
+ 1� ≥ 1, which is valid for any � =

��

�
≤

�

�
. 

Thus, for any � ≤ cos �, we have �� ≤ cos� � < cos� �

�
≤

�����
�

�

��� ���
�

�

. Based on the monotonicity of � ��, arccos � −
�

�
� as a 

function of �, we have 

� ��, arccos � −
�

2
� ≤ � �cos � , arccos(cos �) −

�

2
� 

=
1 − cos� �

1 + cos� � − 2 cos � cos
�
2

. (52) 

Further, one can prove that � �cos � ,
�

�
� < 4 is equivalent to 

�cos
�

�
− 1�

�

�5 cos� �

�
+ 6 cos

�

�
+ 2� > 0, which is valid for 

any � =
��

�
≤

�

�
. In summary, for any � ≤ cos �, we have 

0 < � ��, arccos � +
��

2
� < 1, (53) 

and  

0 < � ��, arccos � −
��

2
� < 4. (54) 

Combining Inequalities (53) and (54) with Equation (44), we 
obtain 

|‖�� − ��‖ − ‖�� − ��‖| 

≥ ��� −
53��

192
�� =

2���

�
−

53��

192
�

2�

�
�

�

, 

� ≥ 8, �� ≤ � cos � , � = arccos
��

�
. (55) 

For any source point �� = (�� cos � , �� sin �), the maximum 
sampling step size can be expressed as 

�(��, �) = max
�

|‖�� − ��‖ − ‖�� − ��‖| . (56) 

From Inequality (49) we have  

�(��, �) ≤
2���

�
, � ≥ 8, �� ∈ [0, �). (57) 

According to Inequality (55), there exist at least � values of � 
evenly distributed in [0,2�) such that 

�(��, �) ≥
2���

�
−

53��

192
�

2�

�
�

�

, � ≥ 8, �� ≤ � cos � . (58) 

As can be seen in Equation (57), using ��� =
����

�
 to 

approximate �(��, �) is sufficient for the antialiasing analysis; 

while 
����

���
�

��

�
�

�

�
��

�
�

��

 in Equation (58) can be used to estimate 

the necessity to further reduce the upper bound of �(��, �) for 
the � specific values of �. For general values of �, numerical 
simulation can be used to estimate. 

Next, we analyze these estimations in our numerical 
simulations and in vivo experiments. In both cases, we use � =
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512. The radius constraint, from Inequality (58),  
��

�
≤ cos � =

cos
��

�
≈ 1 − 7.5 × 10�� is close enough to the intrinsic 

constraint �
��

�
< 1�. For the numerical simulations, we set � =

1.5 mm ⋅ μs��, � = 30 mm, and �� = 4.5 MHz, thus we have 
����

���
�

��

�
�

�

�
��

�
�

��

<
���

���
�

��

�
�

�

�
���

�
� < 9.2 × 10��. For in vivo 

experiments, we use � = 1.49 mm ⋅ μs��, � = 110 mm, and 

�� = 3.80 MHz, then we have 
����

���
�

��

�
�

�

�
��

�
�

��

< 2.9 × 10��. 

In both cases, for the � specific values of �, using 
����

�
 to 

approximate �(��, �) is accurate enough. For general values of 
�, we use numerical simulation to observe the approximation 
error for source locations on two circles (in vivo experiment 

cases): one with a radius of 0.95��
� = 0.95

���

��
≈ 15.2 mm (��

� 

is the radius of ��), the other with a radius of 6.75��
� ≈

107.8 mm (98% of �). We plot �(��, �) = ���� −

�(��, �)� �
��

�
�

��

 against � ∈ �0,
�

��
� for �� = 0.95��

� and 6.75��
� 

in Fig. 9(b) and (c), respectively. Each red bar marks a choice 
of � assumed in Inequality (58). One can see from Fig. 9(b) 
and (c) that, for general values of �, to further reduce the upper 
bound of �(��, �) is unnecessary. 

APPENDIX D 

SPATIOTEMPORAL ANTIALIASING FOR THE LINEAR ARRAY 

As another application of the proposed spatiotemporal 
analysis, we consider a linear array with � (� ≥ 4) point 
elements, pitch �, and lower cutoff wavelength �� < 2�. Using 
the linear array center � as the origin, the array (marked as the 
red line) as one axis and its normal as another axis, we construct 
a cartesian coordinate, as shown in Fig. 10(a). For a source point 
location �� = (�, �) and two adjacent element locations �� =

��� −
���

�
� �, 0� and ���� = ��� −

���

�
� �, 0� , � = 0, … , � −

2, the sampling step size can be expressed as 
|‖�� − ��‖ − ‖�� − ����‖| =  

�

�
��� + �� − �� −

� − 1

2
� ��

�

−

��� + �� − �� −
� − 3

2
� ��

� �

�
. (59) 

 
Figure 10. Spatial aliasing in a linear array. (a) A linear array (marked as the 
red line) with � elements and pitch �. A Cartesian coordinate is formed with 
the array’s center � as the origin, the array direction as � axis, and its normal 
vector as � axis. Two adjacent element locations ��, ����, and a source point 

location �� are marked. Two symmetric hyperbolas (with sampling step size 
��

�
) 

with � ≥ 0 are shown as black-solid curves and their asymptotes as blue-dashed 
lines. The one-way Nyquist zone �� is formed by the points above the two 
asymptotes crossing � axis. (b) The whole imaging domain ��, the one-way 
Nyquist zone ��, and the two-way Nyquist zone �� are outlined with red, blue, 
and green lines, respectively. 

We first consider the sampling step size of 
��

�
 

|‖�� − ��‖ − ‖�� − ����‖| =
��

2
, (60) 

which is a hyperbola with a standard form: 

�� − �� −
� − 2

2
� ��

�

�
��

4
�

� −
��

�
�
2

�
�

− �
��

4
�

� = 1. (61) 

For source points lie in between the two curves of this 
hyperbola, the spatial Nyquist criterion 

|‖�� − ��‖ − ‖�� − ����‖| <
��

2
, (62) 

is satisfied. Based on this geometric perception, the spatial 
Nyquist criterion for all element pairs can be simplified into two 

cases: the leftmost one |‖�� − ��‖ − ‖�� − ��‖| <
��

�
, and the 

rightmost one |‖�� − ����‖ − ‖�� − ����‖| <
��

�
. Illustrations 

of these two hyperbolas with � ≥ 0 are shown in Fig. 10(a) as 
black-solid curves, while their asymptotes are shown as blue-
dashed lines. Due to the symmetry between these two 
hyperbolas, they intersect with � axis at the same point 

(0, ��
� ) = �0, ���

��

��
�

�

− 1� ��
���

�
��

�

− �
��

�
�

�

��, while their 

asymptotes intersect with � axis at 

(0, ��) = �0,
� − 2

2
���

2�

��
�

�

− 1� . (63) 

We approximate the one-way Nyquist zone using 

�� = �(�, �)|� > max �
�� −

� − 2

2
�� ,

�� +
� − 2

2
��

� ��
2�

��
�

�

− 1� , (64) 

which is the region above the two intersecting asymptotes, as 
shown in Fig. 10(a). At � = 0, the approximation error achieves 
the maximum value 

|�� − ��
� | ≤

�
��

4
�

�

��
2�
��

�
�

− 1

�(� − 2)��� − �
��

2
�

�

<

�
��

4
�

�

��
2�
��

�
�

− 1

��(� − 1)(� − 3)
. (65) 

Assuming � = 1.5 mm ⋅ μs��, �� = 4.5 MHz, � = 256, and 

� = 0.25 mm, we have �� ≈ 35.5 mm and 
�������

� �

��
< 7.4 ×

10��, which proves the accuracy of using �� as the one-way 
Nyquist zone. Further, we approximate the two-way Nyquist 
zone using 

�� = �(�, �)|� > max �
�� −

� − 2

2
�� ,

�� +
� − 2

2
��

� ��
4�

��
�

�

− 1� . (66) 

One can prove that spatial interpolation extends �� to ��, 
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whereas further extending �� requires temporal filtering. The 
linear array (with the whole imaging domain ��) and the 
boundaries of the two zones (�� and ��) are shown in Fig. 10(b) 
as red, blue, and green lines, respectively. 

ACKNOWLEDGMENT 

The authors appreciate the close reading of the manuscript by 
Professor James Ballard. 

REFERENCES 

[1] R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del 
Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. 
Phys., vol. 40, no. 11, 2013. 

[2] S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. 
Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic 
tomography achieves quantitative blood oxygenation imaging deep in 
tissues,” Nat. Commun., vol. 7, 2016. 

[3] X. L. Deán-Ben, G. Sela, A. Lauri, M. Kneipp, V. Ntziachristos, G. G. 
Westmeyer, S. Shoham, and D. Razansky, “Functional optoacoustic 
neuro-tomography for scalable whole-brain monitoring of calcium 
indicators,” Light Sci. Appl., vol. 5, no. 12, p. e16201, 2016. 

[4] L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, 
W. Chen, J. Shi, and others, “Single-impulse panoramic photoacoustic 
computed tomography of small-animal whole-body dynamics at high 
spatiotemporal resolution,” Nat. Biomed. Eng., vol. 1, no. 5, p. 0071, 
2017. 

[5] Y. Matsumoto, Y. Asao, A. Yoshikawa, H. Sekiguchi, M. Takada, M. 
Furu, S. Saito, M. Kataoka, H. Abe, T. Yagi, and others, “Label-free 
photoacoustic imaging of human palmar vessels: a structural 
morphological analysis,” Sci. Rep., vol. 8, no. 1, p. 786, 2018. 

[6] L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and 
L. V. Wang, “Single-breath-hold photoacoustic computed tomography 
of the breast,” Nat. Commun., vol. 9, no. 1, p. 2352, 2018. 

[7] L. Li, A. A. Shemetov, M. Baloban, P. Hu, L. Zhu, D. M. 
Shcherbakova, R. Zhang, J. Shi, J. Yao, L. V. Wang, and others, “Small 
near-infrared photochromic protein for photoacoustic multi-contrast 
imaging and detection of protein interactions in vivo,” Nat. Commun., 
vol. 9, no. 1, p. 2734, 2018. 

[8] Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S.-Y. Yang, L. V. Wang, and W. 
Gao, “A microrobotic system guided by photoacoustic computed 
tomography for targeted navigation in intestines in vivo,” Sci. Robot., 
vol. 4, no. 32, p. eaax0613, 2019. 

[9] K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation 
of iterative image reconstruction in three-dimensional optoacoustic 
tomography,” Phys. Med. Biol., vol. 57, no. 17, p. 5399, 2012. 

[10] Chao Huang, Kun Wang, Liming Nie, L. V. Wang, and M. A. 
Anastasio, “Full-wave iterative image reconstruction in photoacoustic 
tomography with acoustically inhomogeneous media,” IEEE Trans. 
Med. Imaging, vol. 32, no. 6, pp. 1097–1110, Jun. 2013. 

[11] K. Mitsuhashi, J. Poudel, T. P. Matthews, A. Garcia-Uribe, L. V. Wang, 
and M. A. Anastasio, “A forward-adjoint operator pair based on the 
elastic wave equation for use in transcranial photoacoustic computed 
tomography,” SIAM J. Imaging Sci., vol. 10, no. 4, pp. 2022–2048, 
2017. 

[12] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the 
simulation and reconstruction of photoacoustic wave fields,” J. Biomed. 
Opt., vol. 15, no. 2, p. 021314, 2010. 

[13] K. Mitsuhashi, K. Wang, and M. A. Anastasio, “Investigation of the far-
field approximation for modeling a transducer’s spatial impulse 
response in photoacoustic computed tomography,” Photoacoustics, vol. 
2, no. 1, pp. 21–32, 2014. 

[14] Y. Han, V. Ntziachristos, and A. Rosenthal, “Optoacoustic image 
reconstruction and system analysis for finite-aperture detectors under 
the wavelet-packet framework,” J. Biomed. Opt., vol. 21, no. 1, p. 
016002, 2016. 

[15] S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. 
Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic 
tomography via compressed sensing,” ArXiv Prepr. ArXiv160500133, 
2016. 

[16] Y. Han, L. Ding, X. L. D. Ben, D. Razansky, J. Prakash, and V. 
Ntziachristos, “Three-dimensional optoacoustic reconstruction using 
fast sparse representation,” Opt. Lett., vol. 42, no. 5, pp. 979–982, 2017. 

[17] S. Schoeder, I. Olefir, M. Kronbichler, V. Ntziachristos, and W. Wall, 
“Optoacoustic image reconstruction: the full inverse problem with 
variable bases,” Proc. R. Soc. A, vol. 474, no. 2219, p. 20180369, 2018. 

[18] T. P. Matthews, J. Poudel, L. Li, L. V. Wang, and M. A. Anastasio, 
“Parameterized Joint Reconstruction of the Initial Pressure and Sound 
Speed Distributions for Photoacoustic Computed Tomography,” SIAM 
J. Imaging Sci., vol. 11, no. 2, pp. 1560–1588, 2018. 

[19] Y. Xu and L. V. Wang, “Time reversal and its application to 
tomography with diffracting sources,” Phys. Rev. Lett., vol. 92, no. 3, 
p. 033902, 2004. 

[20] B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in 
absorbing acoustic media using time reversal,” Inverse Probl., vol. 26, 
no. 11, p. 115003, 2010. 

[21] B. T. Cox and B. E. Treeby, “Artifact trapping during time reversal 
photoacoustic imaging for acoustically heterogeneous media,” IEEE 
Trans. Med. Imaging, vol. 29, no. 2, pp. 387–396, 2010. 

[22] B. E. Treeby, J. Jaros, and B. T. Cox, “Advanced photoacoustic image 
reconstruction using the k-Wave toolbox,” in Photons Plus Ultrasound: 
Imaging and Sensing 2016, 2016, vol. 9708, p. 97082P. 

[23] O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. 
A. Long, and P. Beard, “In vivo three-dimensional photoacoustic 
imaging of the renal vasculature in preclinical rodent models,” Am. J. 
Physiol.-Ren. Physiol., vol. 314, no. 6, pp. F1145–F1153, 2017. 

[24] M. Xu and L. V. Wang, “Universal back-projection algorithm for 
photoacoustic computed tomography,” Phys. Rev. E, vol. 71, no. 1, p. 
016706, 2005. 

[25] L. Song, K. I. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 
3-D dark-field reflection-mode photoacoustic microscopy in vivo with 
a 30-MHz ultrasound linear array,” J. Biomed. Opt., vol. 13, no. 5, p. 
054028, 2008. 

[26] X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for 
volumetric real-time optoacoustic imaging at centimeter-scale depths,” 
Opt. Express, vol. 21, no. 23, pp. 28062–28071, 2013. 

[27] M. Pramanik, “Improving tangential resolution with a modified delay-
and-sum reconstruction algorithm in photoacoustic and thermoacoustic 
tomography,” JOSA A, vol. 31, no. 3, pp. 621–627, 2014. 

[28] Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain 
reconstruction for thermoacoustic tomography. II. Cylindrical 
geometry,” IEEE Trans. Med. Imaging, vol. 21, no. 7, pp. 829–833, 
2002. 

[29] L. V. Wang and H. Wu, Biomedical optics: principles and imaging. 
John Wiley & Sons, 2012. 

[30] Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic 
tomography,” J. Biomed. Opt., vol. 21, no. 6, p. 061007, 2016. 

[31] M. Deserno, “How to generate equidistributed points on the surface of 
a sphere,” Polym. Ed, p. 99, 2004. 

 

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2020 at 23:36:12 UTC from IEEE Xplore.  Restrictions apply. 


