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Location-Dependent Spatiotemporal Antialiasing
in Photoacoustic Computed Tomography

Peng Hu , Lei Li , and Lihong V. Wang , Fellow, IEEE

Abstract— Photoacoustic computed tomography (PACT)
images optical absorption contrast by detecting ultrasonic
waves induced by optical energy deposition in materials
such as biological tissues. An ultrasonic transducer array
or its scanning equivalent is used to detect ultrasonic
waves. The spatial distribution of the transducer elements
must satisfy the spatial Nyquist criterion; otherwise, spatial
aliasing occurs and causes artifacts in reconstructed
images. The spatial Nyquist criterion poses different
requirements on the transducer elements’ distributions for
different locations in the image domain, which has not been
studied previously. In this research, we elaborate on the
location dependency through spatiotemporal analysis and
propose a location-dependent spatiotemporal antialiasing
method. By applying this method to PACT in full-ring array
geometry, we effectively mitigate aliasing artifacts with
minimal effects on image resolution in both numerical
simulations and in vivo experiments.

Index Terms— Photoacoustic computed tomography,
spatial Nyquist criterion, location-dependent spatiotempo-
ral antialiasing.

I. INTRODUCTION

PHOTOACOUSTIC computed tomography (PACT) images
biological tissues’ optical absorption through detection of

photon-induced ultrasonic waves [1], [2], [3], [4], [5], [6], [7].
PACT forms high-resolution images at greater depths than
ballistic optical imaging [8] by using tissues’ much lower
scattering to ultrasonic waves than to photons. An ultrasonic
transducer array or its scanning equivalent is often used to
detect photon-induced ultrasonic waves. The detected signals
are then used to recover tissues’ optical absorption through
image reconstruction [9], [10], [11], [12], [13]. In ultrasonic
detection, the Nyquist sampling criterion must be satisfied
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in both spatial and temporal dimensions to avoid aliasing.
The Nyquist criterion in the temporal dimension is typically
satisfied because of the limited bandwidth of the ultrasonic
transducer and the high temporal sampling frequency of the
data acquisition system. However, sparse spatial sampling is
commonly used to reduce system cost or scanning time, which
may violate the Nyquist criterion in spatial dimensions (spatial
Nyquist criterion) and cause artifacts in reconstructed images
due to spatial aliasing [1], [14], [15], [16].

Various methods have been proposed to mitigate artifacts
caused by spatial aliasing. In the image domain, total variation
(TV) regularization has been used in model-based iterative
methods to mitigate noise and aliasing artifacts [12], [17], [18],
[19], [20]. In PACT, because the image domain is identical
to the object domain, we will use them interchangeably
henceforth. TV regularization shows high performance for
piecewise smooth images [21], [22]. However, for PACT
images with rich blood vessel structures, TV regularization
tends to suppress vessels of small diameters. A regularization
strategy specifically suited for vessel structures is needed.
Deep learning has been proved effective in processing images
with complex structures [23], [24], [25], [26], [27], [28] and
has shown an advantage in maintaining vessel structures [29].
However, a neural network is often system dependent and
not universally applicable across different imaging systems or
detection geometries. In the signal domain, temporal filtering
and spatial interpolation have been used for antialiasing [15].
However, it is still a challenge to find a balance between
mitigating aliasing artifacts and maintaining image resolution.
Another method proposed by Cai et al. [30] mitigates aliasing
artifacts by connecting the image domain and the signal
domain. It identifies potential sources of aliasing signals in
the image domain, maps the sources to the signal domain,
suppresses all the signals in the mapped region, and uses the
remaining signals for image reconstruction [30]. This method
performs well if there exist only a few dominant sources of
aliasing signals. As sources of aliasing signals increase, this
method may cause substantial information loss.

To mitigate aliasing artifacts without compromising image
resolution, we perform detailed spatiotemporal analysis for
image subdomains here. We first reconstruct an image using
the universal back-projection (UBP) method [9]. Applying
a threshold to the reconstructed image, we identify the
dominant sources of aliasing signals. Then we divide the
whole image domain into multiple subdomains. We apply
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spatiotemporal analysis to source points, transducer locations,
and each subdomain’s reconstruction locations [15], revealing
the spatial aliasing effects on the subdomain in detail. Next,
we apply temporal filtering and spatial interpolation to signals
so that the filtered signals satisfy the spatial Nyquist criterion
specifically for this subdomain. We use the filtered signals
to form an image in this subdomain. Repeating this process
for all subdomains, we mitigate the aliasing artifacts for
the whole image. We call this method location-dependent
spatiotemporal antialiasing. Through numerical simulations,
we demonstrate that the proposed method effectively mitigates
aliasing artifacts with minimal effects on the image resolution.
We further validate this method through in vivo human breast
imaging.

II. UBP METHOD AND LOCATION-DEPENDENT

RECENTERING OF SIGNALS

In the forward model in PACT with a homogeneous
medium, the signal detected by the element at the location
rn and time t is expressed as [8], [15]

p̂ (rn, t) = 1

4πc2

M∑
m=1

vm
p0

(
r′

m

)∥∥r′
m − rn

∥∥h′
e

(
t −

∥∥r′
m − rn

∥∥
c

)
,

n = 1, 2, . . . , N, t ≥ 0. (1)

Here, we have M point sources distributed at r′
m ,

m = 1, 2, . . . , M , and N point transducer elements distributed
at rn, n = 1, 2, . . . , N ; c is the speed of sound; vm

is the volume of the m-th source point; p0
(
r′

m

)
is the

initial pressure at r′
m ; he (t) is the ultrasonic transducer’s

electric impulse response (EIR), and h′
e (t) denotes its

time derivative. Based on the UBP method [9], the initial
pressure can be reconstructed from the detected signals.
In a spatially discrete form, the reconstruction can be
expressed as

p̂0
(
r′′) ≈

N∑
n=1

wnb̂

(
rn, t =

∥∥r′′−rn
∥∥

c

)
, r′′ ∈ D.

(2)

Here, p̂0
(
r′′) is the reconstructed initial pressure at r′′,

D is the image domain, and b̂ (rn, t) = 2 p̂ (rn, t) −
2t ∂ p̂(rn,t)

∂t is the back-projection term computed from the
detected signals. The weights wn, n = 1, 2, . . . , N express
the solid-angle term d�

�0
in UBP [9]. Substituting (1) into (2),

we obtain

p̂0
(
r′′)

≈ 1

2πc2

∑N

n=1
wn

∑M

m=1
vm

p0
(
r′

m

)∥∥r′
m − rn

∥∥
×

(
1 −

(
t +

∥∥r′
m − rn

∥∥
c

)
∂

∂ t

)

h′
e

(∥∥r′′−rn
∥∥

c
−

∥∥r′
m − rn

∥∥
c

)
,

r′′ ∈ D. (3)

As demonstrated in [15], spatial aliasing in PACT has two
sources: spatial sampling and image reconstruction. Spatial
aliasing in spatial sampling and image reconstruction can be

explained by analyzing the step size of ‖r′
m−rn‖

c (in (1)) and
‖r′′−rn‖

c −‖r′
m−rn‖

c (in (3)), respectively, as n varies [15]. Here,
we divide the whole image domain D into subdomains; then
we analyze these two terms and develop antialiasing strategies
for each subdomain.

For simplicity, we focus on 2D image reconstruction and
consider only rectangular subdomains. For a subdomain Dsub
of size lx × ly centered at r′

c,sub, we shift the time t to t ′

according to t ′ = t −
∥∥∥r′

c,sub−rn

∥∥∥
c ; instead of analyzing p̂ (rn, t),

we analyze

p̂Dsub

(
rn, t ′

) = p̂

⎛
⎝rn, t ′ +

∥∥∥r′
c,sub − rn

∥∥∥
c

⎞
⎠ ,

n = 1, 2, . . . , N, (4)

which corresponds to a temporal recentering of signals based
on the transducer elements’ distances to the subdomain center
r′

c,sub. After the recentering, the signals originating from r′
c,sub

arrive at all detectors at time 0, and the exact range of interest
for t ′ is dynamically determined for each subdomain. This
recentering is essential in antialiasing to minimize temporal
filtering and thus image blurring. Substituting (1) into (4)
yields

p̂Dsub

(
rn, t ′

) = 1

4πc2

∑M

m=1
vm

p0
(
r′

m

)∥∥r′
m − rn

∥∥
× h′

e

⎛
⎝t ′ −

⎛
⎝∥∥r′

m − rn
∥∥

c
−

∥∥∥r′
c,sub−rn

∥∥∥
c

⎞
⎠

⎞
⎠ ,

n = 1, 2, . . . , N. (5)

III. SPATIOTEMPORAL ANTIALIASING

FOR AN IMAGE SUBDOMAIN

Given the subdomain Dsub, we categorize our analysis into
four cases with increasing complexities: without point sources
outside Dsub, with a single point source outside Dsub, with
multiple point sources outside Dsub, and with general sources
outside Dsub. In all cases, we discuss image reconstruction
only in Dsub.

A. Without Point Sources Outside the Subdomain

In the first case, without point sources outside the
subdomain Dsub, we perform spatiotemporal analysis only for
source points and reconstruction locations inside Dsub. Let
r′ and r′′ be a source point and a reconstruction location,
respectively, in Dsub. Let r and radj be two adjacent element
locations, as shown in Fig. 1(a).

First, we analyze spatial aliasing in spatial sampling based
on (5). We define

t ′r =
∥∥r′ − r

∥∥
c

−
∥∥∥r′

c,sub−r
∥∥∥

c
, (6)
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Fig. 1. Location-dependent spatiotemporal analysis. (a) No point
sources outside the subdomain. A full-ring transducer array (red circle),
an image subdomain (rectangle with gray interior and blue boundary,
denoted as Dsub, centered at r′c,sub, and of size lx × ly), two adjacent
element locations r and radj, a source point r′ inside Dsub, and a
reconstruction location r′′ inside Dsub. There exists a hyperbola with r
and radj as the foci, and with one branch (blue dotted curve) crossing r′.
One of the branch’s intersection points with the boundary of Dsub is
denoted as r̂′. This graph is used in the spatiotemporal analysis for Dsub
without point sources outside. (b) One or multiple point sources outside
the subdomain. A full-ring transducer array, an image subdomain Dsub
centered at r′c,sub, two adjacent element locations r and radj, and a
reconstruction location r′′ inside Dsub. We have a single source point
(r′) or multiple source points (r′1, r′2, r′3, . . .) outside Dsub. This graph is
used in the spatiotemporal analysis for Dsub with a single or multiple point
sources outside. (c) Multiple point sources outside multiple subdomains.
A full-ring transducer array, two image subdomains D1 and D2 (centered
at r′c,1 and r′c,2, respectively), and a group of source points: r′1, r′2, r′3, . . . .

and its step size when the element location r changes to radj:

τ
(
r, radj, r′

c,sub, r′) =
∣∣∣t ′radj

− t ′r
∣∣∣

=

∣∣∣∣∣∣∣∣

(‖r′−radj‖
c − ‖r′−r‖

c

)
−(∥∥∥r′

c,sub−radj

∥∥∥
c −

∥∥∥r′
c,sub−r

∥∥∥
c

)
∣∣∣∣∣∣∣∣
,

r′ ∈ Dsub. (7)

For any r′ ∈ Dsub with
∥∥r′ − r

∥∥ �= ∥∥r′ − radj
∥∥, there exists a

branch (blue-dotted curve in Fig. 1(a)) of a hyperbola crossing
r′ and with r and radj as the foci. We denote either one
of the intersection points (using the other one leads to the
same result) between the branch and the boundary of Dsub
as r̂′, as shown in Fig. 1(a). For convenience, we denote the
boundary of Dsub as ∂ Dsub in the following discussions. Based

on one of the hyperbola’s definitions, we have ‖r′−radj‖
c −

‖r′−r‖
c = ‖r̂′−radj‖

c − ‖r̂′−r‖
c . For any r′ ∈ Dsub with∥∥r′ − r

∥∥ = ∥∥r′ − radj
∥∥, r′ will be on the perpendicular

bisector (black-dashed line in Fig. 1(a)) of the line segment
with r and radj as endpoints. Here, we define

τDsub

(
r, radj

) = max
r′∈∂ Dsub

τ
(
r, radj, r′

c,sub, r′). (8)

We choose r̂′ as one of the intersection points between the
perpendicular bisector and ∂ Dsub. Thus, for any r′ ∈ Dsub,
replacing r′ with r̂′ in τ

(
r, radj, r′

c,sub, r′
)

does not change
its value, yielding

τ
(
r, radj, r′

c,sub, r′) = τ
(
r, radj, r′

c,sub, r̂′)≤τDsub

(
r, radj

)
,

r′ ∈ Dsub. (9)

Through (9), we simplify the estimation of the upper limit of
τ

(
r, radj, r′

c,sub, r′
)

from searching r′ in Dsub to searching

r′ on ∂ Dsub, which reduces the computation cost by one
dimension. Due to spatiotemporal coupling, as shown in the

term t −
(

‖r′
m−rn‖

c −
∥∥∥r′

c,sub−rn

∥∥∥
c

)
in (5), the upper cutoff

frequency fc,SS for spatial sampling must meet the Nyquist
criterion:

fc,SS <
1

2τDsub

(
r, radj

) . (10)

Denoting

fc,Dsub (rn) = min
rn′ is adjacent to rn

1

2τDsub (rn, rn′)
,

n, n′ = 1, 2, . . . , N, (11)

we can remove aliasing in the spatial sampling by processing
signals of the element located at rn using a lowpass filter
with an upper cutoff frequency fc,Dsub (rn) , n = 1, 2, . . . , N .
The filter is implemented as a third-order lowpass Butterworth
filter combined with a sinc filter with the same upper cutoff
frequency.

Next, we analyze spatial aliasing in the image reconstruction
based on (3). For this analysis, we first estimate the upper
limit of the step size of ‖r′′−r‖

c − ‖r′−r‖
c between two adjacent

element locations r and radj:

τ
(
r, radj, r′, r′′) =

∣∣∣∣∣∣
(‖r′′−radj‖

c − ‖r′′−r‖
c

)
−(‖r′−radj‖

c −‖r′−r‖
c

)
∣∣∣∣∣∣ ,

r′, r′′∈Dsub. (12)

Based on (9), we use the triangular inequality to obtain

τ
(
r, radj, r′, r′′) ≤ τ

(
r, radj, r′

c,sub, r′)+τ
(
r, radj, r′

c,sub, r′′)
≤ 2τDsub

(
r, radj

)
, r′, r′′∈Dsub. (13)

From (9) and (13) as well as (11), we conclude that removing
aliasing in the image reconstruction can be accomplished by
additional lowpass filtering with an upper cutoff frequency
fc,Dsub (rn)

2 , n = 1, 2, . . . , N. We observe that this cutoff
frequency is half the value required for removing aliasing in
the spatial sampling. This observation agrees with our previous
finding [15], where the whole image domain was globally
analyzed. This filtering would further compromise the spatial
resolution.

Fortunately, the additional filtering is avoided by spatial
interpolation if aliasing in the spatial sampling is removed
first. We denote the denser element locations after the spatial
interpolation as rβ,n, n = 1, 2, . . . , β N with β being an
integer. Note that the denser element locations coincide
with the physical element locations at rn = rβ,β(n−1)+1,
n = 1, 2, . . . , N . For each t ′, the recentered signals
( p̂Dsub

(
rn, t ′

)
) from all the transducer elements form a vector

of length N . We apply fast Fourier transform (FFT) to
the vector and pad zeros following the highest frequency
components to form a new vector of length β N . Then we apply
inverse FFT to the new vector to finish the spatial interpolation.
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Updating (11) with the denser locations, we obtain

fc,Dsub,β

(
rβ,n

) = min
rβ,n′ is adjacent to rβ,n

1

2τDsub

(
rβ,n, rβ,n′

) ,

n, n′ = 1, 2, . . . , β N. (14)

From (7) and (8), we see that the larger the value of β, the
closer the adjacent element locations, the smaller the value of
τDsub

(
rβ,n, rβ,n′

)
, and the larger the value of fc,Dsub,β

(
rβ,n

)
.

According to (13) and (14), we can filter the signals of the

n-th channel with upper cutoff frequency
fc,Dsub,β (rβ,n)

2 to
remove aliasing in the image reconstruction. To avoid
compromising spatial resolution further, we choose β such
that

fc,Dsub,β

(
rβ,β(n−1)+1

)
2

≥ fc,Dsub (rn) , n = 1, 2, . . . , N.

(15)

Thus, after the first temporal filtering with the upper cutoff
frequency of fc,Dsub (rn) to remove aliasing in the spatial
sampling and the spatial interpolation with factor β, we no
longer need to perform additional temporal filtering for image
reconstruction. Because a general subdomain is off-centered
in the image domain, the spatial interpolation is applied to
the recentered signals p̂Dsub

(
rn, t ′

)
instead of the original

signals p̂ (rn, t). In our previous study for the whole image
domain [15], we have β = 2. In this research, the minimal
β satisfying (15) is obtained through numerical computations
for each subdomain.

In summary, to implement spatiotemporal antialiasing in
Dsub, we first apply location-dependent temporal filtering
(LDTF) to the recentered signals p̂Dsub

(
rn, t ′

)
of each element

with an upper cutoff frequency fc,Dsub (rn), and obtain
p̂Dsub,LDTF

(
rn, t ′

)
, n = 1, 2, . . . , N . Then we apply spatial

interpolation with a factor β to the filtered signals and
obtain p̃Dsub

(
rβ,n, t ′

)
, n = 1, 2, . . . , β N . After reversing the

temporal recentering of the signals based on the relation

p̃
(
rβ,n, t

) = p̃Dsub

⎛
⎝rβ,n, t −

∥∥∥r′
c,sub−rβ,n

∥∥∥
c

⎞
⎠ ,

n = 1, 2, . . . , β N, t ≥ 0, (16)

we reconstruct the image in Dsub using (2) for the denser
element locations.

B. With a Single Point Source Outside the Subdomain

We increase the complexity of our theory by adding a single
point source at r′ outside the subdomain Dsub, as shown in
Fig. 1(b). For the single source point r′, (5) reduces to

p̂Dsub

(
rn, t ′

) = vp0
(
r′)

4πc2 ‖r′ − rn‖

× h′
e

⎛
⎝t ′−

⎛
⎝∥∥r′−rn

∥∥
c

−
∥∥∥r′

c,sub−rn

∥∥∥
c

⎞
⎠

⎞
⎠ ,

n = 1, 2, . . . , N, (17)

where p0
(
r′) is the initial pressure at r′ ∈ D\Dsub and v is

the volume of the source point. Similarly, (3) reduces to

p̂0
(
r′′) ≈ vp0

(
r′)

2πc2

N∑
n=1

wn

‖r′ − rn‖

×
(

1 −
(

t +
∥∥r′ − rn

∥∥
c

)
∂

∂ t

)

h′
e

(∥∥r′′−rn
∥∥

c
−

∥∥r′ − rn
∥∥

c

)
, r′′ ∈ Dsub.

(18)

Here, we confine the image reconstruction in Dsub by
letting r′′ ∈ Dsub.

We first analyze spatial aliasing in spatial sampling
for signals from the source point r′. Based on (17),
the spatial aliasing is determined by the step size of

‖r′−rn‖
c −

∥∥∥r′
c,sub−rn

∥∥∥
c as n varies. Using (7), we express the step

size as τ
(

rn, rn′ , r′
c,sub, r′

)
for adjacent element locations rn

and rn′ , and we define the upper cutoff frequency as

fc,SS,Dsub,OS
(
rn, r′) = min

rn′ is adjacent to rn

1

2τ
(

rn, rn′ , r′
c,sub, r′

) ,

n, n′ = 1, 2, . . . , N. (19)

To remove aliasing in spatial sampling (SS in the subscript) for
signals from the source point r′ outside the subdomain (OS in
the subscript), we apply lowpass filtering to p̂Dsub

(
rn, t ′

)
with

the above upper cutoff frequency. We assume that the value of
h′

e(t) is nonzero only for t in an interval [0, Te] ([0, 1.8 µs] for
this research), which is often small for the transducers used in
PACT. To minimize unwanted smoothing of signals, we filter

p̂Dsub

(
rn, t ′

)
only for t ′ −

(
‖r′−rn‖

c −
∥∥∥r′

c,sub−rn

∥∥∥
c

)
∈ [0, Te].

Then we analyze spatial aliasing in the image reconstruction
for signals from the source point r′ based on (18). We estimate

the upper limit of the step size of ‖r′′−rn‖
c −‖r′−rn‖

c as n varies
using

τ
(
r, radj, r′, r′′) ≤ τ

(
r, radj, r′, r′

c,sub

)+τ
(
r, radj, r′

c,sub, r′′)
≤ τ

(
r, radj, r′, r′

c,sub

) + τDsub

(
r, radj

)
,

r′ ∈ D\Dsub, r′′ ∈ Dsub. (20)

To remove aliasing in the image reconstruction (IR in the
following subscript) for signals from the source point r′,
we can apply a second lowpass filtering to p̂Dsub

(
rn, t ′

)
with

an upper cutoff frequency

fc,IR,Dsub,OS
(
rn, r′)

= min
rn′ is adjacent to rn

1

2
(
τ

(
rn, rn′ , r′, r′

c,sub

)
+ τDsub (rn, rn′ )

) ,

n, n′ = 1, 2, . . . , N. (21)

To avoid the second lowpass filtering, after the first lowpass
filtering, we apply spatial interpolation to the filtered signals
and obtain the interpolated signals at virtual locations
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rβ,n, n = 1, 2, . . . , β N . Updating (21) with these virtual
locations, we obtain

fc,IR,Dsub,OS,β

(
rβ,n, r′)

= min
rβ,n′ is adjacent to rβ,n

1

2
(
τ

(
rβ,n, rβ,n′ , r′, r′

c,sub

)
+ τDsub

(
rβ,n, rβ,n′

)) ,

n, n′ = 1, 2, . . . , β N. (22)

Here, we still have the relation rn = rβ,β(n−1)+1,
n = 1, 2, . . . , N . We choose a minimal β such that

fc,IR,Dsub,OS,β

(
rβ,β(n−1)+1, r′)

≥ fc,SS,Dsub,OS
(
rn, r′) ,

n = 1, 2, . . . , N. (23)

The factor β is obtained through numerical computations.
In practice, we have signals from both the subdomain Dsub

and the source point r′. First, we rewrite (19) (for the source
point r′), which applies to only the time domain subsets, as

fc,SS,Dsub,OS
(
rn, t ′, r′)

=
{

fc,SS,Dsub,OS
(
rn, r′) , t ′ − t ′0 ∈ Te

fc,IS, else
,

n = 1, 2, . . . , N, (24)

which applies to the whole time domain. Here, t ′0 = ‖r′−rn‖
c −∥∥∥r′

c,sub−rn

∥∥∥
c denotes the recentered first arrival time from r′ to

rn , and fc,IS denotes the upper cutoff frequency of the imaging
system (IS in the subscript). Next, we combine the upper cutoff
frequencies in (11) (for the subdomain Dsub) and (24) to yield
the following upper cutoff frequency of the recentered signal
p̂Dsub

(
rn, t ′

)
:

fc,Dsub,r′
(
rn, t ′

)
= min

{
fc,Dsub (rn) , fc,SS,Dsub,OS

(
rn, t ′, r′)} ,

n = 1, 2, . . . , N. (25)

For the n-th element at time t ′, by applying lowpass filtering
with the above upper cutoff frequency, we remove aliasing
in spatial sampling for signals from both the subdomain
Dsub and the source point r′. This LDTF process is
computationally intensive if implemented directly. In this
research, we provide an efficient implementation through
precomputation and interpolation, as shown in Appendix A.
Based on (31) in Appendix A, we express the filtered signals
as p̂Dsub,LDTF,r′

(
rn, t ′

)
. Further, we apply to the filtered

signals a spatial interpolation with the minimal factor β
satisfying (15) and (23), and reverse the recentering of the
interpolated signals. We finish the reconstruction in the sub-
domain Dsub based on (2) for the virtual locations and denote
the reconstructed image in Dsub as p̂0,Dsub,r′

(
r′′) , r′′ ∈ Dsub.

C. With Multiple Point Sources Outside the Subdomain

We further extend our theory to include multiple point
sources outside the subdomain Dsub. We denote the set of

source points outside Dsub as G = {
r′

1, r′
2, r′

3, . . .
}
, as shown

in Fig. 1(b), and update the upper cutoff frequency as follows:
fc,Dsub,G

(
rn, t ′

)
= min

{
fc,Dsub (rn) , min

r′∈G
fc,SS,Dsub,OS

(
rn, t ′, r′)} ,

n = 1, 2, . . . , N. (26)

To remove spatial aliasing in the spatial sampling for signals
from the subdomain Dsub and the source points in G, we apply
lowpass filtering with the above upper cutoff frequency to the
recentered signal p̂Dsub

(
rn, t ′

)
of the n-th element at time t ′,

and obtain p̂Dsub,LDTF,G
(
rn, t ′

)
((31) in Appendix A). Then

we find the minimal β such that (15) and (23) are satisfied
for all n = 1, 2, . . . , N and r′ ∈ G. Spatially interpolating the
filtered signals with the factor β, reversing the recentering of
the interpolated signals, and using (2) for the denser locations,
we reconstruct the image for the subdomain Dsub, denoted as
p̂0,Dsub,G

(
r′′) , r′′ ∈ Dsub.

D. With General Sources Outside the Subdomain

In the fourth case, we consider general sources outside the
subdomain Dsub. A direct method for LDTF with general
sources is selecting all voxels outside Dsub as source points
(grouped as G) and using (26) to obtain the upper cutoff
frequencies for lowpass filtering. However, this direct method
causes severe blurring in the reconstructed images due to
unwanted filtering. To minimize unwanted filtering during
spatiotemporal antialiasing, we select multiple sets of sparsely
distributed source points in the image domain (Appendix B),
denoted as G1, G2, . . . , G J . We repeat the process in the
previous case for each G j and obtain an image of the
subdomain Dsub, denoted as p̂0,Dsub,G j

(
r′′) , r′′ ∈ Dsub, j =

1, 2, . . . , J . The final image for the subdomain Dsub is
obtained through averaging

p̂0,Dsub

(
r′′) = 1

J

J∑
j=1

p̂0,Dsub,G j

(
r′′), r′′ ∈ Dsub. (27)

For r′′ ∈ D\Dsub, we define p̂0,Dsub

(
r′′) as zero.

IV. DIVISION OF IMAGE DOMAIN AND

MOSAICKING OF SUBDOMAIN IMAGES

We divide the whole image domain D into multiple
subdomains D1, D2, . . . , DI , as shown in Appendix B.
In Fig. 1(c), we depict two subdomains with a group of outside
point sources. To form the whole image, these subdomains
must satisfy

D = D1 ∪ D2 ∪ . . . ∪ DI . (28)

To mitigate artifacts caused by pixel-value mismatch on
subdomain boundaries, we overlap adjacent subdomains by
a length of ξDD (Fig. 8(b) in Appendix B). Then, for each
subdomain Di , we repeat the process described in the fourth
case above to obtain p̂0,Di

(
r′′) , i = 1, 2, . . . I . Finally,

we mosaic these subdomain images to form the whole image:

p̂0
(
r′′) ≈

I∑
i=1

ŵlx (Di ),ly(Di ),ξDD

(
r′′ − r′

c,i

)
p̂0,Di

(
r′′),

r′′∈D. (29)
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Fig. 2. Workflow of the location-dependent spatiotemporal antialiasing
for PACT.

Here, lx (Di ) and ly(Di ) denote the sizes of the rectangle Di

in x-axis and y-axis directions, respectively, and r′
c,i is the

center of Di . The normalized weight function ŵ is defined by
(34) in Appendix B.

In summary, we have the general workflow of the location-
dependent spatiotemporal antialiasing for PACT, shown
in Fig. 2.

V. NUMERICAL SIMULATIONS WITH POINT SOURCES

A. Spatial Aliasing in the Image Domain and Signal
Domain

Before applying spatiotemporal antialiasing, we first
visualize the spatial aliasing in both the image domain
and signal domain through simulations with point sources.
In fact, we were inspired to propose LDTF by observing
the connection between spatial aliasing in these two domains.
We use the MATLAB k-wave toolbox [31] for the 2D forward
simulation with a ring transducer array of radius R = 110 mm.
We let the frequency range of the transducer be from 0.1 MHz
to 4.5 MHz (2.3-MHz central frequency, 191% one-way
bandwidth, the upper cutoff frequency fc,IS = 4.5 MHz) and
the number of transducer elements be N = 512. We set the
speed of sound as c = 1.5 mm · µs−1. The shorter cutoff
wavelength of this transducer is λc = c

fc,IS
≈ 0.33 mm.

In this simulation, non-zero initial pressure exists only at
three point sources A, B, and C located at rA, rB, and rC,
respectively. We reconstruct an image of the initial pressure
from the simulated signals using the UBP method, shown in
Fig. 3(a) with the three points labeled. Both this image and the

Fig. 3. Spatial aliasing in the image domain and signal domain.
(a) A reconstructed image of three point sources (A, B, and C) with
the one-way Nyquist zone S1 (blue-solid circle). (b) and (c) Closeup
subsets of (a) in the (b) red-dashed box and (c) the yellow-dashed box.
Reconstruction locations P1–P5 along an artifact streak and Q1–Q5
from different artifact streaks are picked in (b) to identify the sources
of artifacts. (d) Signals recentered based on (5) with r′c,� = rC. The
signals used in the reconstructions at locations P1–P5 are marked by
dotted curves with different colors. (e) The same recentered signals
as in (d) but marked by colored-dotted curves showing signals used
for the reconstructions at locations Q1–Q5. (f1)-(g1), (f2)-(g2), (f3)-(g3),
(f4)-(g4), and (f5)-(g5) Signals acquired with spatial sampling frequencies
of (f1) 3.33 MHz, (f2) 4.00 MHz, (f3) 5.00 MHz, (f4) 6.67 MHz, and
(f5) 10.00 MHz, and their integration values along the respective dashed
vertical lines ((g1)–(g5)). (h) Normalized STD of the integration value
versus the spatial sampling frequency.

ring array are centered at the origin. We denote the one-way
Nyquist zone S1 =

{
r′ | ∥∥r′∥∥ < Nλc

4π

}
for the ring array [15]

as a blue-solid circle in Fig. 3(a), where the radius of S1 is
Nλc
4π ≈ 13.6 mm. For source points in S1, there is no aliasing

in the spatial sampling. Closeup images of both subdomains
(D1 and D2) in the red-dashed box and the yellow-dashed box
(Fig. 3(b) and (c)) show aliasing artifacts.

To identify the sources of aliasing artifacts in the signal
domain, we recenter the detected signals based on (5) by
letting r′

c,1 = rC. The recentered signals are shown in both
Fig. 3(d) and (e), with the horizontal direction representing the
time (t ′) and the vertical direction as the element index (n).
For better visualization, the recentered signals are truncated
in the temporal dimension while still containing all signals
from the subdomain D1. Because the spatial Nyquist criterion
is satisfied after recentering, signals from both B and C are
smooth in both spatial and temporal dimensions. By contrast,
signals from A appear dashed in Fig. 3(d) and (e) because the
spatial Nyquist criterion is violated.

We show that these dashed patterns are sources of aliasing
artifacts in Fig. 3(b) by visualizing the connection between the
image domain and signal domain. In fact, from (2), we know
that reconstruction at each point in the image domain using
the UBP method is a weighted integration of a subset in
the signal domain. In subdomain D1, we pick reconstruction
locations P1–P5 along an artifact streak and locations Q1–Q5
on different artifact streaks, as shown in Fig. 3(b). Subsets for
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integrations in the signal domain for the two groups of
reconstruction locations are shown as colored-dotted curves in
Fig. 3(d) and (e), respectively. In Fig. 3(d), the five colored-
dotted curves all intersect with the signals from point A at
approximately the same point. Spatial aliasing at this point in
the signal domain is transformed by the UBP method to an
artifact streak in the image domain. In other words, sharing
the same point in the signal domain corresponds to sharing
the same artifact streak in the image domain. In Fig. 3(e), the
five colored-dotted curves intersect with the signals from point
A at different points, which correspond to different artifact
streaks in the image domain. In summary, aliasing artifacts
in a subdomain are caused by dashed portions of signals that
are recentered to this subdomain. For the subdomain D2, the
spatially dashed portions of recentered signals may come from
all three points, which are far from D2. Thus, the artifacts in
Fig. 3(c) have more complex patterns than those in Fig. 3(b).

We further intuitively explain spatial aliasing. The colored-
dotted curves in Fig. 3(d) and (e) intersect with not only the
signals from point A but also the signals from points B and C.
Signals from points B and C do not contribute to the aliasing
artifacts in Fig. 3(b), which can be explained by the Nyquist
criterion based on (5), as well as by the following intuitive
geometric description. For each combination of a source point
and a reconstruction location, the signals from the source point
and the integration subset intersect. Both the signals and the
integration subset have temporal step sizes when the element
index n varies. It is the difference between the two temporal
step sizes at the intersection points that determines the
amplitude of the aliasing artifact at the reconstruction location.
Signals with differential temporal step sizes of 0.30 µs,
0.25 µs, 0.20 µs, 0.15 µs, and 0.10 µs (corresponding to
spatial sampling frequencies 3.33 MHz, 4.00 MHz, 5.00 MHz,
6.67 MHz, and 10.00 MHz, respectively) are shown in
Fig. 3(f1)–(f5), respectively. In the simplest case that the
temporal step size of the integration subset is approximately
zero within a sufficiently small subdomain, we let the temporal
step size of the signals vary. Thus, the integration subsets
in Fig. 3(f1)–(f5) are vertical lines as indicated by the
white-dotted line in Fig. 3(f2). Normalized integration values
(integrals) at different times in Fig. 3(f1)–(f5) are shown
in Fig. 3(g1)–(g5), respectively. We see that the oscillation
amplitude of the integral decreases as the spatial sampling
frequency increases. Comparing integrations in Fig. 3(f1)
and Fig. 3(f5), we see a key difference: at different times
in Fig. 3(f1), the values along an integration line are
dominated by positive values or negative values, resulting
in fluctuating integrals; however, in Fig. 3(f5), there is no
such dominance, resulting in a close-to-zero integral at any
time. Thus, intuitively, the amplitudes of aliasing artifacts
(caused by signals from a given source point) in the image
domain are determined by the dominance of values of certain
signs in the integration subsets, which are further determined
by the relative temporal step sizes of the signals and
integration subsets at their intersection points. Using standard
deviation (STD) to quantify the amplitude of integrals in
Fig. 3(g1)–(g5), we obtain the amplitude’s dependency on the
spatial sampling frequency, as shown in Fig. 3(h). Based on

Fig. 4. Spatiotemporal antialiasing for the image reconstruction of point
sources. (a1)–(a4) Final spatiotemporal signals used for reconstructions
of the subdomain D1 in UBP, UBP with spatial interpolation (SI), UBP
with RDTF and SI, and UBP with LDTF and SI. (b1)–(b4) Images of the
subdomain D1 reconstructed using (b1) UBP, (b2) UBP with SI, (b3) UBP
with RDTF and SI, and (b4) UBP with LDTF and SI. (c1)–(c4) Images of
the subdomain D2 reconstructed using the four methods to show artifacts
only. (d)–(g) Comparisons of the values along dashed lines (d) L1, (e) L2,
(f) L3, and (g) L4, respectively, for the four methods. The full width at half
maximum (FWHM) of the main lobe in (f) is 0.79 mm for UBP with RDTF
and SI, and 0.40 mm for UBP with LDTF and SI. The amplitudes are
0.67 and 1.09, respectively.

the Nyquist criterion, the amplitude is negligible for a spatial
sampling frequency greater than 2 fc,IS = 9.0 MHz.

B. Image Reconstruction With Spatiotemporal
Antialiasing

To mitigate aliasing artifacts, our previous work [15]
used spatial interpolation and radius-dependent temporal
filtering (RDTF) for a centered subdomain without strong
outside sources, and here we propose LDTF for off-centered
subdomains. We consider image reconstructions for only the
two subdomains, D1 and D2, shown in Fig. 3(a).

We first visualize the final signals used for the reconstruc-
tion of the subdomain D1 in each method. For UBP without
antialiasing, the signals ( p̂D1

(
rn, t ′

)
) recentered based on (5)

with r′
c,1 = rC are shown in Fig. 4(a1) (the same as in

Fig. 3(d) and (e)). For UBP with spatial interpolation, the
original signals ( p̂ (rn, t)) are interpolated in spatial dimension
then recentered for better comparison, as shown in Fig. 4(a2).
For UBP with RDTF and spatial interpolation, the original
signals ( p̂ (rn, t)) are processed first by RDTF then by spatial
interpolation. The results are further recentered for better
comparison, as shown in Fig. 4(a3). For UBP with LDTF
and spatial interpolation, the recentered signals ( p̂D1

(
rn, t ′

)
)

are processed first by LDTF with only one set of source
points G = {rA, rB rC} shown in Fig. 3(a) then by spatial
interpolation, resulting in Fig. 4(a4).

The image of the subdomain D1 reconstructed using UBP,
UBP with spatial interpolation, UBP with RDTF and spatial
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interpolation, and UBP with LDTF and spatial interpolation
are shown in Fig. 4(b1)–(b4), respectively. Aliasing artifacts in
the subdomain D1 are caused by signals from the source point
A. These artifacts appear in the whole subdomain in Fig. 4(b1)
and partially in Fig. 4(b2) and (b3). They are substantially
mitigated in the whole subdomain in Fig. 4(b4). In addition,
the images of point sources B and C in Fig. 4(b4) maintain the
isotropy shown in (b1) while those in Fig. 4(b2) and (b3) are
anisotropically blurred. These differences in aliasing artifacts
and image blurring are determined by the final signals
used for reconstruction in the different methods. Comparing
Fig. 4(a1) and (a2), we see that the signals from A (sources
of aliasing artifacts in D1) are partially mitigated by spatial
interpolation and the signals from B and C are partially
disrupted by spatial interpolation. These partial mitigation and
disruption are caused by the fact that the spatial Nyquist
criterion is only partially satisfied in the original signals
( p̂ (rn, t)). The partial mitigation of the signals from A causes
partial mitigation of the aliasing artifacts in D1, whereas
the partial disruption of the signals from B and C causes
anisotropic blurring in D1, as shown in Fig. 4(b2). RDTF
further blurs signals from all the three points, as shown
in Fig. 4(a3); however, large numbers of aliasing artifacts
remain, as shown in Fig. 4(b3). In contrast, LDTF with
spatial interpolation substantially suppresses signals from A
while maintaining signals from B and C. Thus, as shown in
Fig. 4(b4), LDTF substantially mitigates aliasing artifacts and
maintains the spatial resolution.

Repeating the four reconstruction methods for the subdo-
main D2 yields the images shown in Fig. 4(c1)–(c4). Aliasing
artifacts in D2 are caused by signals from all the three point
sources. Neither RDTF nor spatial interpolation effectively
mitigates signals from these points, resulting in abundant
aliasing artifacts in the reconstructed images, as shown in
Fig. 4(c1)–(c3). By contrast, LDTF with spatial interpolation
substantially suppresses signals from all the three points,
resulting in markedly reduced aliasing artifacts, as shown
in Fig. 4(c4).

For quantitative comparisons, we first pick a line L1 labeled
in Fig. 4(a1) with the values along the line for the four methods
shown in Fig. 4(d). In comparison to the raw signal, signals
from B and C are distorted by spatial interpolation, blurred
by RDTF, but maintained by LDTF with spatial interpolation.
To compare the effects in the image domain, we draw two
lines L2 and L3 in the subdomain D1, as shown in Fig. 4(b1).
The values along lines L2 and L3, respectively, for the four
methods, are compared in Fig. 4(e) and (f). LDTF with spatial
interpolation is superior in antialiasing as shown in Fig. 4(e)
while maintaining the spatial resolution as shown in Fig. 4(f).
However, spatial interpolation anisotropically blurs the image
through signal disruption; RDTF further blurs the image
through temporal lowpass filtering. These blurring effects in
the image domain are shown in Fig. 4(f). To compare aliasing
artifacts in D2, we show the values along a line L4 labeled in
Fig. 4(c1) for the four methods in Fig. 4(g). We see that LDTF
with spatial interpolation is still superior for antialiasing in D2.
Note that RDTF and spatial interpolation’s ineffectiveness for
antialiasing in D1 and D2 is not contradictory with the results

Fig. 5. Applying spatiotemporal antialiasing to the image reconstruction
of a numerical phantom with simple blood vessel structures. (a1) A
numerical phantom consisting of simple blood vessel structures. The
one-way Nyquist zone S1 with a radius of 13.6 mm is marked by a
blue-solid circle. (b1) and (c1) Closeup subsets of the simple numerical
phantom enclosed in the red-dashed box and the yellow-dashed box,
respectively. (a2)–(c2), (a3)–(c3), and (a4)–(c4) Images of the simple
numerical phantom reconstructed using UBP, UBP with RDTF and spatial
interpolation (SI), and UBP with LDTF and SI, respectively, and their
closeup subsets. A line L and two small regions A and B are picked for
comparisons of the three methods. (d) Comparisons of the values along
the line L for the three methods. The FWHM of one main lobe is 0.79 mm
for UBP with RDTF and SI, and 0.49 mm for UBP with LDTF and SI. The
amplitudes are 0.75 and 1.25, respectively. (e) Comparisons of the STDs
of pixel values in regions A and B for the three methods.

in [15], where aliasing artifacts are mainly caused by signals
from sources close to or inside the one-way Nyquist zone S1.

VI. NUMERICAL SIMULATIONS OF

BLOOD VESSEL PHANTOMS

We further validate the proposed method using two
numerical blood vessel phantoms. The first numerical phantom
consists of simple blood vessel structures, as shown in
Fig. 5(a1). Two subsets of the simple numerical phantom
enclosed in the red-dashed box and the yellow-dashed box,
respectively, are shown in Fig. 5(b1) and (c1).

In the point source simulations presented in the above
section, we select only two subdomains and all the three
source points for spatiotemporal antialiasing, as shown
in Fig. 4(a4), (b4), and (c4). For a general numerical phantom
with blood vessel structures, multiple parameters are used to
control the image reconstruction. As shown in Appendix B, the
selection of source points is controlled by subdomain size lSP,
candidacy ratio α, and the number of sets J ; while the image-
domain division is controlled by subdomain size lDD and
overlapping size ξDD. Additionally, we reduce Te in (24) to an
optimal value To to minimize unwanted blurring of images. For
more efficient tuning of the ranges, we scale To for each subdo-
main to a balanced location-dependent parameter Tb (Di ) , i =
1, 2, . . . , I , as proposed in Appendix C. In summary, six
parameters (lSP, α, J, lDD, ξDD, To) need to be tuned for best
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reconstruction. In Appendix D, we propose a parameter-tuning
strategy based on alternating-direction optimization.

Applying the parameter-tuning strategy to the first
numerical phantom with simple structures, we choose
(lSP, α, J, lDD, ξDD, To) to be (0.6 mm, 0.02, 36, 18 mm,
1.8 mm, 1.2 µs). Reconstructions of the simple numerical
phantom using UBP, UBP with RDTF and spatial interpo-
lation, and UBP with LDTF and spatial interpolation are
shown in Fig. 5(a2)–(a4), respectively. Reconstructions of
the subdomains in Fig. 5(b1) and (c1) using the three
methods are shown in Fig. 5(b2)-(c2), (b3)-(c3), and (b4)-(c4),
respectively. Comparing Fig. 5(c2)–(c4), we see that LDTF
with spatial interpolation is more effective than RDTF with
spatial interpolation in mitigating aliasing artifacts, which
agrees with the comparison for point sources shown in
Fig. 4(b1)–(b4). Moreover, comparing Fig. 5(b2) and (b3),
we observe that RDTF with spatial interpolation compromises
image resolution and introduces additional artifacts during
antialiasing. These observations also agree with the results in
Fig. 4(b1)–(b4) and are mainly caused by the fact that the
spatial Nyquist criterion is partially unsatisfied after RDTF,
as explained in Fig. 4(a1)–(a4). In summary, LDTF with
spatial interpolation has better performance than RDTF with
spatial interpolation in both mitigating aliasing artifacts and
maintaining image resolution.

For quantitative comparisons, we draw a line L (marked
in Fig. 5(b2)) in the red-boxed subdomain. The values along
the line L for the three methods are shown in Fig. 5(d).
We observe that RDTF with spatial interpolation blurs the
image and introduces artifacts, whereas LDTF with spatial
interpolation maintains the image resolution and maintains the
low-amplitude background. It needs to be noted that aliasing
artifacts only appear for certain combinations of source point
and reconstruction location. The low-amplitude background
around L in Fig. 5(b2) means that aliasing artifacts in this
region are caused only by low-amplitude point sources. For
quantitative comparisons of aliasing artifacts, we pick two
small regions A and B (marked in Fig. 5(c2)) in the yellow-
boxed subdomain. The amplitudes of aliasing artifacts in A
and B are quantified by STDs of the pixel values in them.
We compare these STDs in Fig. 5(e), which further validates
that LDTF with spatial interpolation outperforms RDTF with
spatial interpolation in mitigating aliasing artifacts.

The second numerical phantom is shown in Fig. 6(a1),
which consists of blood vessels with complex structures.
Two subsets of the complex numerical phantom are
shown in Fig. 6(b1) and (c1), respectively. Applying the
parameter-tuning strategy to the complex numerical phantom,
we choose (lSP, α, J, lDD, ξDD, To) to be (3.6 mm, 0.08,
36, 18 mm, 1.8 mm, 1.2 µs). Reconstructions of the
complex numerical phantom using UBP, UBP with RDTF
and spatial interpolation, and UBP with LDTF and spatial
interpolation are shown in Fig. 6(a2)–(a4), respectively. The
subdomain images reconstructed by the three methods are
shown in Fig. 6(b2)-(c2), (b3)-(c3), and (b4)-(c4), respectively.
Comparing these subdomain images, we see that LDTF
with spatial interpolation more effectively mitigates aliasing
artifacts than RDTF with spatial interpolation. Moreover, using

Fig. 6. Applying spatiotemporal antialiasing to the image reconstruction
of a numerical phantom with complex blood vessel structures.
(a1)–(c1) A numerical phantom consisting of complex blood vessel
structures, and its closeup subsets. (a2)–(c2), (a3)–(c3), and (a4)–(c4)
Images of the complex numerical phantom reconstructed using UBP,
UBP with RDTF and spatial interpolation (SI), and UBP with LDTF and
SI, respectively, and their closeup subsets. (d) Comparisons of the values
along the line L marked in (b2) for the three methods. The FWHM of the
dominant lobe is 0.93 mm for UBP with RDTF and SI, and 0.73 mm for
UBP with LDTF and SI. The amplitudes are 1.15 and 1.31, respectively.
(e) Comparisons of the STDs of pixel values in regions A and B marked
in (b2) and (c2), respectively, for the three methods.

numerical simulations of the complex numerical phantom,
we demonstrate the advantage of using the location-dependent
parameter Tb (Di ) over using a constant parameter To across
all subdomains for temporal filtering (Appendix E).

For quantitative comparisons, we draw a line L (marked in
Fig. 6(b2)) in the red-boxed subdomain and pick two small
regions A and B (marked in Fig. 6(b2) and (c2), respectively)
in different subdomains for the three methods. The values
along the line L are shown in Fig. 6(d) while the STDs of the
pixel values in A and B are compared in Fig. 6(e). In Fig. 6(d),
we still see that RDTF with spatial interpolation blurs the
image and introduces new artifacts; whereas LDTF with
spatial interpolation blurs the image to a smaller degree and
mitigates the aliasing artifacts. The blurring effect of LDTF
with spatial interpolation is more obvious in the complex
numerical phantom than in the simple numerical phantom.
In fact, compared with the simple numerical phantom, more
source points are selected for LDTF in the complex numerical
phantom, which results in the filtering of more signals and
more blurring of the image. Thus, for images with complex
structures, we find a balance between mitigating aliasing
artifacts and maintaining image resolution by tuning the
parameters. Because of this balance, aliasing artifacts still
appear in Fig. 6(b4). In Fig. 6(e), we still observe that LDTF
with spatial interpolation is better than RDTF with spatial
interpolation in mitigating aliasing artifacts.

Due to the more intricate temporal filtering for antialiasing,
the proposed method has a significantly higher computation
cost. On a computer with Windows 10 Home and Intel®
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Core™ i7-6700 CPU @ 3.40 GHz, the reconstructions of the
simple numerical phantom through UBP, UBP with RDTF
and spatial interpolation, and UBP with LDTF and spatial
interpolation (single-thread implementations) take 17.6 s,
98.8 s, and 682.7 s (average values for 10 repetitions),
respectively. For the complex numerical phantom, the
computation times of the first two methods do not change
but the third one takes 1345.5 s due to the differences in
reconstruction parameters. All methods can be accelerated
through GPU. For example, using an NVIDIA GeForce
GTX 1050 Ti graphics card, we reduce the computation time
of the UBP method from 17.6 s to 0.54 s. Although not
demonstrated in this study, an efficient GPU acceleration of
the proposed method is preferred for faster parameter tuning
and image reconstruction in future studies.

VII. IN VIVO EXPERIMENTS

Finally, we apply the proposed LDTF with spatial
interpolation to human breast imaging in vivo. The imaging
system has been reported by Lin et al. [2], in which a
512-element full-ring ultrasonic transducer array (Imasonic,
Inc., 110-mm radius, 2.25-MHz central frequency, 95% one-
way bandwidth) was used. In our previous study [15], the
cutoff frequency has been estimated to be fc,IS ≈ 3.80 MHz.
Here we use the speed of sound c = 1.49 mm · µs−1. A cross-
sectional image of a breast in vivo is reconstructed using UBP
and shown in Fig. 7(a1). The result of UBP with RDTF and
spatial interpolation is shown in Fig. 7(a2).

To use LDTF with spatial interpolation in UBP for
image reconstruction, we tune the parameters (lSP, α,J, lDD,
ξDD, To). This parameter tuning is simplified by comparing
the parameters used for the numerical blood vessel phantoms.
In those simulations, we use (lSP, α) = (0.6 mm, 0.02) for
the simple numerical phantom, (lSP, α) = (3.6 mm, 0.08)
for the complex numerical phantom, and (J, lDD, ξDD, To) =
(36, 18 mm, 1.8 mm, 1.2 µs) for both phantoms. Considering
that the structural complexities of the simple numerical
phantom and the complex numerical phantom occupy a
complexity range large enough for our study, we still use
(J, lDD, ξDD, To) = (36, 18 mm, 1.8 mm, 1.2 µs) for the
breast imaging. Following the same parameter-tuning protocol,
we select (lSP, α) = (1.8 mm, 0.04) for the breast imaging.
In summary, we use (lSP, α,J, lDD, ξDD, To) = (1.8 mm, 0.04,
36, 18 mm, 1.8 mm, 1.2 µs) for the reconstruction of the breast
image. The result of UBP with LDTF and spatial interpolation
is shown in Fig. 7(a3).

For better comparisons, we select two subdomains in a red-
dashed box and a yellow-dashed box, respectively, as shown
in Fig. 7(a1)–(a3). Closeup images of the subdomains are
shown in Fig. 7(b1)-(c1), (b2)-(c2), and (b3)-(c3) for the three
methods, respectively. Comparing Fig. 7(b1)–(b3), we see that
both RDTF with spatial interpolation and LDTF with spatial
interpolation mitigate aliasing artifacts. However, RDTF with
spatial interpolation compromises image resolution. From
Fig. 7(c1)–(c3), we see that LDTF with spatial interpolation
is more effective than RDTF with spatial interpolation in
mitigating the aliasing artifacts. For quantitative comparisons,
we pick two lines L1 and L2 in the red-boxed subdomain

Fig. 7. Applying spatiotemporal antialiasing to human breast imaging
in vivo. (a1)–(a3) Images of a human breast cross section in vivo
reconstructed using (a1) UBP, (a2) UBP with RDTF and spatial
interpolation (SI), and (a3) UBP with LDTF and SI. Two subdomains
in the red-dashed box and the yellow-dashed box, respectively, are
picked for comparisons of the three methods. (b1)-(c1), (b2)-(c2), and
(b3)-(c3) Closeup images of the two subdomains for the three methods,
respectively. Lines L1 and L2 are picked for comparisons. (d) and (e)
Values along lines L1 and L2, respectively, for the three methods.

(Fig. 7(b1)). Pixel values along these two lines, respectively,
for the three methods are shown in Fig. 7(d) and (e),
which further validate that LDTF with spatial interpolation
is more effective than RDTF with spatial interpolation in both
mitigating aliasing artifacts and maintaining image resolution.

VIII. CONCLUSION AND DISCUSSION

In this research, we proposed an antialiasing method for
PACT based on LDTF with spatial interpolation, which
exhibits better performance in mitigating aliasing artifacts
while maintaining image resolution. We applied this method
to UBP and validated it through numerical simulations and
in vivo experiments. To apply this method, we first divide
the image domain into subdomains and select multiple groups
of source points with maximum amplitudes from an initial
image reconstructed using UBP. Then for each subdomain
and each group of source points, we temporally filter the
signals from the source points that overlap with signals from
the subdomain. We recentered signals for this subdomain,
apply spatial interpolation to the recentered signals, and use
them to reconstruct the image in the subdomain. In this
process, doing temporal filtering only for signals from
source points with high amplitudes is essential for mitigating
the dominant aliasing artifacts while minimizing unwanted
blurring of the image. Location-dependent recentering of
signals before spatial interpolation is essential for protecting
signals from the subdomain of interest during spatial
interpolation and maintaining image resolution. The proposed
method outperforms our previous method based on RDTF
with spatial interpolation in mitigating aliasing artifacts and
maintaining image resolution.

To get the best performance of LDTF with spatial
interpolation, we analyzed the sensitivities of all the
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parameters. We found that parameters (J, lDD, ξDD, To) are
relatively insensitive for this study whereas parameters (lSP, α)
are sensitive. Thus, in all numerical simulations and in vivo
experiments, we have the same choice of the four parameters
(J, lDD, ξDD, To) and only vary the other two (lSP, α). For
a certain application, (lSP, α) can be varied for different
preferences for mitigating aliasing artifacts and maintaining
image resolution. Also, we proposed just one strategy for
determining the location-dependent parameter Tb (Di ) given
the parameter To and a group of source points, which can be
further improved in future studies. Moreover, in applications
with subdomain illuminations or patterned illuminations, we
can select the source points based on prior knowledge of the
illumination patterns to achieve more efficient LDTF.

The spatiotemporal analysis in this research relies on the
homogeneous-medium assumption, which is satisfied in the
numerical simulations. The effectiveness of LDTF with spatial
interpolation in human breast imaging in vivo further validates
that our theory applies to approximately homogenous media.
For strongly inhomogeneous media, such as in transcranial
PACT, more studies need to be done to demonstrate and
improve the method’s performance.

LDTF with spatial interpolation is applicable to other image
reconstruction methods and other detection geometries. In fact,
we can use LDTF with spatial interpolation as a filter for
preprocessing and use another method for reconstruction. For
example, we can use LDTF with spatial interpolation before
a model-based iterative method with TV regularization to
reduce the requirement of the regularization parameter and
minimize unwanted blurring. We also can use LDTF with
spatial interpolation before a deep neural network to reduce
the network’s burden in antialiasing, which potentially makes
the network more robust. Importantly, the proposed method
does not rely on a specific transducer array geometry, thus
is directly applicable to other geometries, such as a linear
array. Moreover, the proposed method is not limited to 1D
arrays for 2D imaging. Through dimension decomposition, the
method is applicable to 2D arrays, such as arrays of spherical,
cylindrical, and planar geometries, allowing for spatiotemporal
antialiasing in 3D imaging. An efficient GPU acceleration of
the proposed method is preferred for faster parameter tuning
and image reconstruction in future studies.

APPENDIX A

An Efficient Implementation of LDTF

If implemented directly, processing signal p̂Dsub

(
rn, t ′

)
of

each element at time t ′ using a lowpass filter with an upper

cutoff frequency of f is computationally intensive. For fast
reconstruction, we give an efficient implementation of the
LDTF through precomputation and interpolation. Before the
reconstruction of any subdomain, we process the original
signals p̂ (rn, t) of each element using lowpass filters with
upper cutoff frequencies of fc,k , k = 1, 2, . . . , K +1 satisfying
0 < fc,1 < fc,2 < . . . < fc,K < fc,K+1 = fc. Here, a
lowpass filter with an upper cutoff frequency means a third-
order lowpass Butterworth filter followed by a sinc filter with
the same upper cutoff frequency. We denote the filtered signals
as p̂ fc,k (rn, t) , k = 1, 2, . . . , K + 1. For reconstruction of a
subdomain Dsub, we recenter the filtered signals based on (4)
and obtain

p̂Dsub, fc,k

(
rn, t ′

) = p̂ fc,k

⎛
⎝rn, t ′ +

∥∥∥r′
c,sub−rn

∥∥∥
c

⎞
⎠ ,

n = 1, 2, . . . , N, k = 1, 2, . . . , K + 1.

(30)

For a general cutoff frequency f > 0, we obtain the filtered
signals through linear interpolation, as shown in (31) at the
bottom of the page.

In practice, we let the upper cutoff frequencies
fc,k, k = 1, 2, . . . , K + 1 be dense enough so that further
increasing their density has minor effects on the reconstructed
images. As an application, we substitute fc,Dsub,r′

(
rn, t ′

)
( fc,Dsub,G

(
rn, t ′

)
) for f in (31) to obtain p̂Dsub,LDTF,r′

(
rn, t ′

)
( p̂Dsub,LDTF,G

(
rn, t ′

)
).

APPENDIX B

Selection of Source Points and Division of Image Domain

For LDTF with spatial interpolation, we select multiple
groups of source points in the image domain and divide the
image domain into subdomains for reconstructions. To select
source points, we first reconstruct an image using the UBP
method and select the αM pixels with the largest absolute
values as source-point candidates, shown as white pixels
in Fig. 8(a). Here, M is the number of all pixels, and α
is the candidacy ratio. Then we divide the image domain
into subdomains of size lSP × lSP for further selection.
In each subdomain, if there exist source-point candidates,
we randomly select one; otherwise, we do not select. The
selected source points in all subdomains form a group of
source points for LDTF. Repeating this random selection J
times, we obtain J groups of source points: G1, G2, . . . , G J .

p̂Dsub, f
(
rn, t ′

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f

fc,1
p̂Dsub, fc,1

(
rn, t ′

)
, 0 < f ≤ fc,1

fc,k+1 − f

fc,k+1 − fc,k
p̂Dsub, fc,k

(
rn, t ′

)+
f − fc,k

fc,k+1 − fc,k
p̂Dsub, fc,k+1

(
rn, t ′

)
, fc,k < f ≤ fc,k+1,

k = 1, 2, . . . , K

p̂Dsub, fc

(
rn, t ′

)
, f > fc,K+1 = fc

n = 1, 2, . . . , N, f > 0. (31)
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Fig. 8. Selection of source points and division of image domain.
(a) Selection of source points from a UBP reconstructed image. The white
pixels indicate the αM pixels with the largest absolute pixel values in the
image. Subdomains have a size of lSP × lSP and are visualized by a grid.
Two groups of selected source points are shown as blue dots (G1) and red
triangles (G2), respectively. (b) Domain division in a UBP reconstructed
image. Initially, subdomains have a size of lDD×lDD (residual subdomains
are smaller), shown as a grid. Then each subdomain is extended by ξDD

2
out of its boundaries inside the image domain.

The first two groups are shown in Fig. 8(a) as blue dots and
red triangles, respectively.

For image-domain division, we start from one corner of
the image domain and choose a square subdomain for every
distance lDD in each dimension, as shown in Fig. 8(b). The
residual subdomains are rectangles whose sizes are determined
by the residual lengths. To mitigate artifacts caused by pixel
value mismatch on subdomain boundaries, we extend each
subdomain by ξDD

2 outside of its boundaries inside the image
domain. The extended subdomains are denoted as D1, D2, …,
DI . To mosaic the subdomain images, we define a 2D weight
function

wlx ,ly ,ξ

(
r′′) = wlx ,ly ,ξ (x, y) = wlx ,ξ (x) wly ,ξ (y), (32)

where the 1D weight function is defined as

wl,ξ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, |x | ≤ l

2
1 − 2 |x | − l

ξ
,

l

2
< |x | ≤ l + ξ

2

0, |x | >
l + ξ

2
.

(33)

We normalize the weight functions for these subdomains as

ŵlx (Di ),ly(Di ),ξDD

(
r′′−r′

c,i

)
=

wlx (Di ),ly (Di ),ξDD

(
r′′−r′

c,i

)
I∑

i ′=1
wlx (Di′),ly(Di′),ξDD

(
r′′−r′

c,i ′
) , i = 1, 2, . . . , I,

(34)

where lx (Di ) and ly(Di ) denote the sizes of the rectangle Di

in x-axis and y-axis directions, respectively, and r′
c,i is the

center of Di . Then, we mosaic images in subdomains D1,
D2, …, DI through (29) to form the whole image in D.

Fig. 9. Location-dependent parameter Tb
(
Di

)
for temporal filtering.

(a) Evenly distributed source points, shown as white dots, and two
subdomains D1 and D2, marked by a red-dashed box and a yellow-
dashed box, respectively. (b) The subset of the signal domain (white
pixels) that is occupied by signals (with To = 0.3 µs) from the source
points in (a). Signals from subdomains D1 and D2 occupy a region
between two red curves and a region between two yellow curves,
respectively. Signals from the centers of D1 and D2 are indicated by
two blue curves. (c1) and (c2) Subsets of (b) recentered for D1 and
D2, respectively, showing a difference between the occupancy rates of
signals from the source points: 0.405 for D1 and 0.606 for D2. (d1) and
(d2) The occupancy rates for D1 and D2 (0.405 and 0.390, respectively)
after using the location-dependent parameter Tb

(
Di

)
.

APPENDIX C

Location-Dependent Parameter Tb (Di) for Temporal
Filtering

The parameter To determines the range for temporal
filtering: as To increases, wider temporal ranges of signals
are filtered. In practice, we tune To to find a balance between
mitigating aliasing artifacts and maintaining image resolution.
In numerical simulations, we observe that for the same To,
different amounts of signals are filtered for the reconstructions
of different subdomains. This observation means that an
optimal choice of To for one subdomain may not be optimal
for another subdomain, which makes the tuning of To location-
dependent and computationally intensive. To make the tuning
of To more efficient, we propose a strategy to scale To for
different subdomains automatically.

Before an adjustment of To, we first quantify the amount
of temporal filtering for each subdomain through numerical
simulation. In an image domain with a size of 120×120 mm2,
we have 14 × 14 evenly distributed source points, shown
as white dots in Fig. 9(a). We choose lDD = 12 mm and
ξDD = 1.8 mm for image-domain division, which results in
100 subdomains. Two of the subdomains, D1 and D2, are
marked in Fig. 9(a) as a red-dashed box and a yellow-dashed
box, respectively. We conduct a forward simulation to visualize
the signals from the source points, which occupy a subset
of the signal domain marked as white pixels in Fig. 9(b).
Here, we use a relatively small parameter To = 0.3 µs in
the simulation to avoid saturation of the occupancy. In the
reconstruction of a subdomain using the UBP method, signals
from only a subset are used. For subdomains D1 and D2,
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the used signal subsets are marked by two red curves and
two yellow curves, respectively, in Fig. 9(b). The signals from
the centers of the two subdomains are marked by two blue
curves, respectively. Based on (4), we recenter signals in the
two subsets with respect to the subdomain centers, as shown
in Fig. 9(c1) and (c2), respectively. For each subdomain, the
corresponding signal subset is partially occupied by signals
from the source points: for D1 and D2, the occupancy
ratios are 0.405 and 0.606, respectively. We have shown that
temporal filtering is determined not only by the occupancy
ratio but also by the relative temporal step sizes. Here, as an
approximation, we ignore the effects of the relative temporal
step sizes and use only the occupancy ratio to quantify the
amount of temporal filtering.

Next, we use the occupancy ratio to adjust To for each
subdomain to achieve a low variation of occupancy ratios
across subdomains. We denote the occupancy ratio of the
subdomain Di as oi , i = 1, 2, , . . . , I . Instead of using the
same To for all subdomains, we use

Tb (Di ) =
⎛
⎝ min

1≤i≤I
oi

oi

⎞
⎠

γ

To (35)

for temporal filtering in the reconstruction of the subdomain
Di , i = 1, 2, . . . , I . Here, we use γ to account for
the occupancy ratio’s nonlinear dependency on To due to
the overlapping of signals from different source points.
After multiple tests, we choose γ = 1.8 to achieve
a low variation of occupancy ratios across subdomains.
Applying the location-dependent parameter Tb (Di ) to all
the 100 subdomains, we obtain a new set of occupancy
ratios. For subdomain D1, the occupancy ratio does not
change. For subdomain D2, the occupancy ratio reduces from
0.606 to 0.390. The new signal occupancies for D1 and D2 are
visualized in Fig. 9(d1) and (d2), respectively. The occupancy
ratios for the constant To and the location-dependent Tb (Di )
are compared in Fig. 9(e). From this comparison, we see that
the variation of the occupancy ratios across subdomains is
reduced by using the location-dependent parameter Tb (Di ),
which is controlled only by To for a given group of source
points. In practice, we only tune To in (35), then the amount of
temporal filtering in each subdomain is automatically adjusted
by using Tb (Di ). Thus, we simplify tuning To for each
subdomain to tuning a single To for all subdomains.

APPENDIX D

Parameter Sensitivity Analysis Based on
Alternating-Direction Optimization

The purpose of parameter tuning is to balance mitigating
aliasing artifacts with maintaining image resolution. For this
purpose, we quantify the amplitude of aliasing artifacts and
image resolution for different choices of parameters. In a
numerical phantom, we identify regions with zero initial
pressure in the ground-truth image as background. For each
reconstructed image, we use the STD of the background pixel
values to quantify the amplitude of aliasing artifacts. As for
image resolution, we use values along lines of interest in

Fig. 10. Parameter sensitivity analysis. (a1)-(a2), (b1)-(b2), (c1)-(c2),
(d1)-(d2), (e1)-(e2), and (f1)-(f2) Normalized STDs of the background
pixel values and values along the line L1 in Fig. 5(c2) for different choices
of a parameter (lSP, α, J, lDD, ξDD, or To, respectively), while others are
kept as constants.

the reconstructed image for comparison. Location-dependent
spatiotemporal antialiasing is affected by parameters used in
the source points selection (lSP, α, J ), the image-domain
division (lDD, ξDD), and the temporal filtering To. Here,
by tuning these parameters for image reconstruction of the
simple numerical phantom, we analyze the proposed method’s
sensitivity to these parameters. This analysis is then used to
guide the parameter tuning for the complex numerical phantom
and the in vivo experiments.

Exploring all combinations of the six parameters is compu-
tationally intensive. We use alternating-direction optimization
for more efficient tuning, meaning we tune one parameter
each time without changing others. We start the tuning process
by letting (lSP, α, J, lDD, ξDD, To) = (1 mm, 0.01, 10, 10 mm,
1 mm, 1 µs), which is an order-of-magnitude empirical
estimation. After multiple iterations, we obtain the best choice
(lSP, α, J, lDD, ξDD, To) = (0.6 mm, 0.02, 36, 18 mm, 1.8 mm,
1.2 µs) for the numerical phantom with simple blood vessel
structures.

To justify the choice, we first tune lSP while keeping
(α, J, lDD, ξDD, To) = (0.02, 36, 18 mm, 1.8 mm, 1.2 µs).
For aliasing artifacts, we obtain the STDs of the background
pixel values for different values of lSP and normalize them
by dividing the average STD, as shown in Fig. 10(a1).
For image resolution, we compare the values along the
line L in Fig. 5(b2) for lSP of 0.3 mm, 0.6 mm, and
1.2 mm, respectively, as shown in Fig. 10(a2). As we see
in Fig. 10(a1), for lSP > 0.6 mm, the STD increases as
lSP increases. In fact, a greater value of lSP means fewer
source points for spatiotemporal antialiasing, which results
in a greater amplitude of aliasing artifacts and less blurring
of the image, as shown in Fig. 10(a1) and (a2), respectively.
As a balance, we choose lSP = 0.6 mm. Then we tune α
while letting (lSP, J, lDD, ξDD, To) = (0.6 mm, 36, 18 mm,
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1.8 mm, 1.2 µs). For mitigating aliasing artifacts, α = 0.02 is
the best choice, as shown in Fig. 10(b1). For α < 0.02,
a smaller α means fewer source points for spatiotemporal
antialiasing, which results in a higher amplitude of aliasing
artifacts. For α > 0.02, a greater α means more source point
candidates including low-amplitude ones. However, in the
random-selection step, having more low-amplitude source
points means that the dominant source points are less likely
to be selected. As a result, the spatiotemporal antialiasing
is less effective, leading to a higher amplitude of aliasing
artifacts. For maintaining image resolution, α = 0.02 still
turns out to be the best choice, as shown in Fig. 10(b2).
Thus, we choose α = 0.02. The tuning of J is simpler.
As shown in Fig. 10(c1) and (c2), the increase of J reduces the
STD but has minor effects on image resolution. Considering
that the computational time has linear dependency on J ,
we choose J = 36 for a balance between antialiasing
performance and computational efficiency. Further, we tune
lDD while keeping (lSP, α, J, ξDD, To) = (0.6 mm, 0.02, 36,
1.8 mm, 1.2 µs). As we see in Fig. 10(d1), the STD is
relatively small for lDD < 20 mm. For lDD > 20 mm, the
STD increases as lDD increases, which is explained by the
fact that the advantage of the location dependency in our
proposed method is mitigated as the subdomain size increases.
In Fig. 10(d2), we see that lDD = 18 mm is the best choice for
maintaining image resolution. Combining the observations in
Fig. 10(d1) and (d2), we choose lDD = 18 mm. Next, we tune
ξDD while letting (lSP, α,J, lDD, To) = (0.6 mm, 0.02, 36,
18 mm, 1.2 µs). As we see in Fig. 10(e1) and (e2), changing
the value of ξDD has minor effects on both aliasing artifacts
and image resolution. We let ξDD be one-tenth of lDD: 1.8 mm.
Finally, the tuning of To for the simple numerical phantom is
simple. As shown in Fig. 10(f1) and (f2), the increase of To
reduces the STD but has minor effects on image resolution.
We choose To to be 1.2 µs. Further increasing To has minor
benefits in mitigating aliasing artifacts and may blur other
regions of the image.

In summary, for the simple numerical phantom, the tuning
of every parameter is a robust process without abrupt changes.
The performance of the location-dependent spatiotemporal
antialiasing is sensitive to lSP and α but insensitive to ξDD.
The sensitivity is low for J ≥ 36, lDD ≤ 20 mm, and
To ≥ 1.2 µs. These observations serve as guidance for
parameter tuning of the complex numerical phantom and in
vivo experiments. In fact, we use the same (J, lDD, ξDD, To)
for these reconstructions and only tune (lSP, α). For another
imaging system, we can update (J, lDD, ξDD, To) accordingly
through numerical simulations and only tune (lSP, α) for
different datasets.

APPENDIX E

The Advantage of Using the Location-Dependent
Parameter Tb (Di) Over Using a Constant To for
Temporal Filtering

We choose to use the location-dependent parameter Tb (Di )
for temporal filtering in this research. Here, based on
numerical simulations of the complex numerical phantom,
we demonstrate the choice’s advantage over using the same

Fig. 11. Comparison of using the location-dependent range Tb(Di) and
using a constant To for temporal filtering. (a1) Reconstructed image of the
complex numerical phantom through UBP. (a2) and (a3) Reconstructed
images through UBP with LDTF and spatial interpolation (SI), using
the location-dependent parameter Tb(Di) and a constant parameter To,
respectively. Two subdomains in a red-dashed box and a yellow-dashed
box, respectively, are picked for comparisons. (b1)-(c1), (b2)-(c2), and
(b3)-(c3) Closeup images of the two subdomains for the three methods,
respectively. (d) and (e) Comparisons of values along lines L1 and L2,
respectively, for the three methods.

parameter To for all subdomains. We use parameter values
(lSP, α, J, lDD, ξDD, To) = (3.6 mm, 0.08, 36, 18 mm, 1.8 mm,
1.2 µs) in these simulations.

The reconstructed image of the complex numerical phantom
using the UBP method without spatiotemporal antialiasing is
shown in Fig. 11(a1). Using the location-dependent parameter
Tb (Di ) for temporal filtering in the proposed spatiotemporal
antialiasing, we obtain the image shown in Fig. 11(a2).
Using the same parameter To across all subdomains for
temporal filtering, we obtain the image shown in Fig. 11(a3).
We pick two subdomains, marked by a red-dashed box and
a yellow-dashed box, respectively, in the three images for
comparisons. Closeup images of the subdomains are shown
in Fig. 11(b1)-(c1), (b2)-(c2), and (b3)-(c3), respectively.
Comparing Fig. 11(b1)–(b3), we see that the image resolution
is maintained in the central region by using the location-
dependent parameter Tb (Di ); whereas the image is blurred
by using a constant To across subdomains. Comparing
Fig. 11(c1)–(c3), we notice similar performances of using the
location-dependent parameter Tb (Di ) and using a constant
To in mitigating aliasing artifacts in the peripheral region.
Quantitatively, we pick two lines, L1 and L2, in the two
subdomains (shown in Fig. 11(b1) and (c1), respectively)
and compare the values on them for the three methods in
Fig. 11(d) and (e), respectively. As we see in Fig. 11(d), the
image resolution in the central region is not affected by using
the location-dependent parameter Tb (Di ) but compromised by
using a constant To. For the peripheral region, we see similar
performances of the two choices in Fig. 11(e).

In summary, to achieve similar performances in mitigating
aliasing artifacts (most abundant in the peripheral region),
using the location-dependent parameter Tb (Di ) is better than
using a constant To in maintaining image resolution (most
obvious in the central region).

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 04,2023 at 21:10:57 UTC from IEEE Xplore.  Restrictions apply. 



1224 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

ACKNOWLEDGMENT

The authors would like to thank Li Lin for his helpful
discussion in this study. Lihong V. Wang has financial
interests in Microphotoacoustics, Inc., CalPACT, LLC, and
Union Photoacoustic Technologies, Ltd., which did not support
this work.

REFERENCES

[1] L. Li et al., “Single-impulse panoramic photoacoustic computed tomog-
raphy of small-animal whole-body dynamics at high spatiotemporal
resolution,” Nature Biomed. Eng., vol. 1, no. 5, p. 71, May 2017.

[2] L. Lin et al., “Single-breath-hold photoacoustic computed tomography
of the breast,” Nature Commun., vol. 9, no. 1, p. 2352, 2018.

[3] L. Lin et al., “High-speed three-dimensional photoacoustic computed
tomography for preclinical research and clinical translation,” Nature
Commun., vol. 12, no. 1, pp. 1–10, Dec. 2021.

[4] D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-
time multispectral optoacoustic tomography of biomarkers,” Nature
Protocols, vol. 6, no. 8, pp. 1121–1129, 2011.

[5] R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. D. Rio,
and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys.,
vol. 40, no. 11, Oct. 2013, Art. no. 113301.

[6] V. Ntziachristos and D. Razansky, “Molecular imaging by means of
multispectral optoacoustic tomography (MSOT),” Chem. Rev., vol. 110,
no. 5, pp. 2783–2794, May 2010.

[7] J. G. Laufer et al., “In vivo preclinical photoacoustic imaging of tumor
vasculature development and therapy,” J. Biomed. Opt., vol. 17, no. 5,
May 2012, Art. no. 056016.

[8] L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging.
Hoboken, NJ, USA: Wiley, 2012.

[9] M. Xu and L. V. Wang, “Universal back-projection algorithm for
photoacoustic computed tomography,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 71, no. 1, Jan. 2005,
Art. no. 016706.

[10] B. E. Treeby and B. T. Cox, “K-wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave fields,” J. Biomed.
Opt., vol. 15, no. 2, 2010, Art. no. 021314.

[11] A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-
analytical model-based acoustic inversion for quantitative optoacoustic
tomography,” IEEE Trans. Med. Imag., vol. 29, no. 6, pp. 1275–1285,
Jun. 2010.

[12] K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation
of iterative image reconstruction in three-dimensional optoacoustic
tomography,” Phys. Med. Biol., vol. 57, no. 17, pp. 5399–5423,
Aug. 2012.

[13] K. Mitsuhashi, J. Poudel, T. P. Matthews, A. Garcia-Uribe, L. V. Wang,
and M. A. Anastasio, “A forward-adjoint operator pair based on the
elastic wave equation for use in transcranial photoacoustic computed
tomography,” SIAM J. Imag. Sci., vol. 10, no. 4, pp. 2022–2048,
Jan. 2017.

[14] Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction
for thermoacoustic tomography. II. Cylindrical geometry,” IEEE Trans.
Med. Imag., vol. 21, no. 7, pp. 829–833, Jul. 2002.

[15] P. Hu, L. Li, L. Lin, and L. V. Wang, “Spatiotemporal antialiasing in
photoacoustic computed tomography,” IEEE Trans. Med. Imag., vol. 39,
no. 11, pp. 3535–3547, Nov. 2020.

[16] N. Davoudi, X. L. Deán-Ben, and D. Razansky, “Deep learning
optoacoustic tomography with sparse data,” Nature Mach. Intell., vol. 1,
no. 10, pp. 453–460, Oct. 2019.

[17] C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-
wave iterative image reconstruction in photoacoustic tomography with
acoustically inhomogeneous media,” IEEE Trans. Med. Imag., vol. 32,
no. 6, pp. 1097–1110, Jun. 2013.

[18] K. Mitsuhashi, J. Poudel, T. P. Matthews, A. Garcia-Uribe, L. V. Wang,
and M. A. Anastasio, “A forward-adjoint operator pair based on the
elastic wave equation for use in transcranial photoacoustic computed
tomography,” SIAM J. Imag. Sci., vol. 10, no. 4, pp. 2022–2048,
Jan. 2017.

[19] S. Arridge et al., “Accelerated high-resolution photoacoustic tomography
via compressed sensing,” 2016, arXiv:1605.00133.

[20] M. Pérez-Liva, J. L. Herraiz, J. M. Udías, E. Miller, B. T. Cox,
and B. E. Treeby, “Time domain reconstruction of sound speed and
attenuation in ultrasound computed tomography using full wave
inversion,” J. Acoust. Soc. Amer., vol. 141, no. 3, pp. 1595–1604,
Mar. 2017.

[21] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Math. Imag. Vis., vol. 20, nos. 1–2, pp. 89–97,
Jan. 2004.

[22] A. Beck and M. Teboulle, “Fast gradient-based algorithms for
constrained total variation image denoising and deblurring problems,”
IEEE Trans. Image Process., vol. 18, no. 11, pp. 2419–2434, Nov. 2009.

[23] N. Davoudi, X. L. Deán-Ben, and D. Razansky, “Deep learning
optoacoustic tomography with sparse data,” Nature Mach. Intell., vol. 1,
no. 10, pp. 453–460, Oct. 2019.

[24] N. Davoudi et al., “Deep learning of image- and time-domain data
enhances the visibility of structures in optoacoustic tomography,” Opt.
Lett., vol. 46, no. 13, pp. 3029–3032, Jul. 2021.

[25] V. A. Kelkar and M. Anastasio, “Prior image-constrained reconstruction
using style-based generative models,” in Proc. 38th Int. Conf. Mach.
Learn., 2021, pp. 5367–5377.

[26] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen,
“Image reconstruction by domain-transform manifold learning,” Nature,
vol. 555, pp. 487–492, Mar. 2018.

[27] C. M. Hyun, H. P. Kim, S. M. Lee, S. Lee, and J. K. Seo, “Deep learning
for undersampled MRI reconstruction,” Phys. Med. Biol., vol. 63, no. 13,
Jun. 2018, Art. no. 135007.

[28] T. Würfl et al., “Deep learning computed tomography: Learning
projection-domain weights from image domain in limited angle
problems,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1454–1463,
Jun. 2018.

[29] N. Davoudi, X. L. Deán-Ben, and D. Razansky, “Deep learning
optoacoustic tomography with sparse data,” Nature Mach. Intell., vol. 1,
no. 10, pp. 453–460, Oct. 2019.

[30] C. Cai, X. Wang, K. Si, J. Qian, J. Luo, and C. Ma, “Streak artifact
suppression in photoacoustic computed tomography using adaptive back
projection,” Biomed. Opt. Exp., vol. 10, no. 9, pp. 4803–4814, 2019.

[31] B. E. Treeby and B. T. Cox, “K-wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave fields,” J. Biomed.
Opt., vol. 15, no. 2, 2010, Art. no. 021314.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 04,2023 at 21:10:57 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


